所有棱長(zhǎng)都相等的正三棱錐的側(cè)棱和底面所成角的大小為
 
考點(diǎn):直線(xiàn)與平面所成的角
專(zhuān)題:空間角
分析:由所有棱長(zhǎng)都相等的正三棱錐,令S在底面ABC上的投影為O,則O為正三角形ABC的中心,則∠SAO即為側(cè)棱SA與底面ABC所成角,根據(jù)等邊三角形的性質(zhì),求出AO后,解三角形SAO,即可求出答案.
解答: 解:∵三棱錐S-ABC為正三棱錐,
∴S在底面ABC上的投影為ABC的中心O
連接SO,AO,則∠SAO即為側(cè)棱SA與底面ABC所成角
設(shè)AB=AC=BC=SA=SB=SC=3
∴AO=
3
,
在Rt△SAO中,cos∠SAO=
AO
SA
=
3
3

∴∠SAO=arccos
3
3

故答案為:arccos
3
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線(xiàn)與平面所成角,其中根據(jù)正三棱錐的幾何牲,構(gòu)造出∠SAO即為側(cè)棱SA與底面ABC所成角,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-3x+3)•ex的定義域?yàn)閇-2,t],設(shè)f(-2)=m,f(t)=n.
(1)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(2)求證:m<n;
(3)求證:對(duì)于任意的t>-2,總存在x0∈(-2,t),滿(mǎn)足
f′(x0)
ex0
=
2
3
(t-1)2;又若方程
f′(x0)
ex0
=
2
3
(t-1)2;在(-2,t)上有唯一解,請(qǐng)確定t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有2人從一座n層大樓的底層進(jìn)入電梯,設(shè)他們中的每一個(gè)人的第二層開(kāi)始在每一層離開(kāi)時(shí)等可能的,若2人在不同層離開(kāi)的概率為
8
9
,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx+
1
x
,
(1)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)求函數(shù)f(x)在[
1
2
,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線(xiàn)的焦點(diǎn)在x軸上,兩條漸近線(xiàn)方程為y=±
1
2
x,則離心率e為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx,a,b,c分別為△ABC的內(nèi)角A,B,C所對(duì)的邊,且3a2+3b2-c2=4ab,則下列不等式一定成立的是( 。
A、f(sinA)≤f(cosB)
B、f(sinA)≥f(cosB)
C、f(sinA)≥f(sinB)
D、f(cosA)≤f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在區(qū)域Ω:|x-a|+|y-b|≤c(c>0)內(nèi)運(yùn)動(dòng),則P落在Ω的內(nèi)切圓內(nèi)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC三邊長(zhǎng)分別為AB=7,BC=5,CA=6,則
AB
BC
的值為(  )
A、-19B、19
C、14D、-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+
a
x
+lnx(a∈R).
(Ⅰ)當(dāng)a=3時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性并求極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案