3.已知x,y是實(shí)數(shù),則“x>1,y<1”是“(x-1)(y-1)<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由(x-1)(y-1)<0,解得x>1,y<1,或y>1,x<1,即可判斷出結(jié)論.

解答 解:由(x-1)(y-1)<0,解得x>1,y<1,或y>1,x<1,
∴“x>1,y<1”是“(x-1)(y-1)<0”的充分不必要條件.
故選:A.

點(diǎn)評 本題考查了不等式的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x,lga,lgb,y成等差數(shù)列,a>1,b>1,且a+b=20,則x+y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2{x}^{2},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$,則f(f($\frac{π}{4}$))等于( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z1=2+3i,z2=t-i,且z1•$\overline{{z}_{2}}$是實(shí)數(shù),則實(shí)數(shù)t等于( 。
A.$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,?a∈R,都有f(a)+f(-a)=1成立的是( 。
A.f(x)=ln($\sqrt{1+{x}^{2}}$-x)B.f(x)=cos2(x-$\frac{π}{4}$)C.f(x)=$\frac{x}{{x}^{2}+1}$D.f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^3}+1,x≥0}\\{{x^2}+2,x<0}\end{array}}\right.$,若f(x)=1,則x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.a(chǎn)-b+1>0是a>|b|的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z=$\frac{2}{1+i}$,則下列判斷正確的是( 。
A.z的實(shí)部為-1B.|z|=$\sqrt{2}$
C.z的虛部為-iD.z的共軛復(fù)數(shù)為1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某學(xué)校食堂早餐只有花卷、包子、面條和蛋炒飯四種主食可供食用,有5名同學(xué)前去就餐,每人只選擇其中一種,且每種主食都至少有一名同學(xué)選擇.已知包子數(shù)量不足僅夠一人食用,甲同學(xué)腸胃不好不會選擇蛋炒飯,則這5名同學(xué)不同的主食選擇方案種數(shù)為( 。
A.144B.132C.96D.48

查看答案和解析>>

同步練習(xí)冊答案