15.已知點O在平面ABC內(nèi),若$\overrightarrow{AO}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ∈R),則直線AO經(jīng)過△ABC的內(nèi)心.

分析 確定$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$的方向與∠BAC的角平分線一致,從而可得$\overrightarrow{AP}$的方向與∠BAC的角平分線一致,即可得到結(jié)論.

解答 解:∵$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$、$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$分別表示$\overrightarrow{AB}$,$\overrightarrow{AC}$方向上的單位向量,
$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$的方向與∠BAC的角平分線一致,
$\overrightarrow{AO}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),
∴$\overrightarrow{AP}$的方向與∠BAC的角平分線一致
∴一定通過△ABC的內(nèi)心,
故答案選:內(nèi).

點評 本題主要考查向量的線性運算和幾何意義,考查三角形的內(nèi)心,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=2cos($\frac{π}{3}$x+φ)圖象的一個對稱中心為(2,0),且f(1)>f(3),要得到函數(shù),f(x)的圖象可將函數(shù)y=2cos$\frac{π}{3}$x的圖象(  )
A.向左平移$\frac{1}{2}$個單位長度B.向左平移$\frac{π}{6}$個單位長度
C.向右平移$\frac{1}{2}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓M:x2+2y2=2.
(Ⅰ)求橢圓M的離心率;
(Ⅱ)設(shè)O為坐標原點,A,B,C為橢圓M上的三個動點,若四邊形OABC為平行四邊形,判斷△ABC的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\frac{{\sqrt{x-2}}}{{2\sqrt{x+1}}}$的定義域是( 。
A.(-1,+∞)B.[2,+∞)C.(-∞,2]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P(1,$\frac{3}{2}$),其離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的右頂點為A,直線l交C于兩點M、N(異于點A),若D在MN上,且AD⊥MN,|AD|2=|MD||ND|,證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將函數(shù)f(x)=cosx的圖象向右平移$\frac{π}{2}$個單位后所得的圖象的函數(shù)解析式為y=sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.用反證法證明命題“設(shè)a,b是實數(shù),則方程x3+ax+b=0至少有一個實根”時,要做的反設(shè)是(4)(填序號)
(1)方程x3+ax+b=0恰好有兩個實根   (2)方程x3+ax+b=0至多有一個實根
(3)方程x3+ax+b=0至多有兩個實根   (4)方程x3+ax+b=0沒有實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某商場柜臺銷售某種產(chǎn)品,每件產(chǎn)品的成本為10元,并且每件產(chǎn)品需向該商場交a元(3≤a≤7)的管理費,預(yù)計當每件產(chǎn)品的售價為x元(20≤x≤25)時,一天的銷售量為(x-30)2件.
(Ⅰ)求該柜臺一天的利潤f(x)(元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(Ⅱ)當每件產(chǎn)品的售價為多少元時,該柜臺一天的利潤f(x)最大,并求出f(x)的最大值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,將拋物線C1:y=$\frac{1}{2}$x2+2x沿x軸對稱后,向右平移3個單位,再向下平移5個單位,得到拋物線C2,若拋物線C1的頂點為A,點P是拋物線C2上一點,則△POA的面積的最小值為( 。
A.3B.3.5C.4D.4.5

查看答案和解析>>

同步練習冊答案