18.已知定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足xf′(x)>2f(x),若a>b>0,則( 。
A.b2f(a)<a2f(b)B.b2f(a)>a2f(b)C.a2f(a)<b2f(b)D.a2f(a)>b2f(b)

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),利用導(dǎo)數(shù)研究其單調(diào)性即可得出.

解答 解:令g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),
g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵?x∈(0,+∞),2f(x)<xf′(x)恒成立,
∴g′(x)>0,
∴函數(shù)g(x)在x∈(0,+∞)上單調(diào)遞增,
∴g(a)>g(b),即$\frac{f(a)}{{a}^{2}}$>$\frac{f(b)}{^{2}}$,
∴b2f(a)>a2f(b),
故選:B.

點評 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值、構(gòu)造函數(shù)法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若I,∅分別表示全集與空集,且(∁IP)∪M?P,則集合P,M必須滿足( 。
A.∅?P?MB.M?P?IC.M=∅D.P=I且M≠P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知兩個函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{{x}^{2},x≤0}\end{array}\right.$.
(1)當x≤0時,求f(g(x))的解析式;
(2)當x<0時,求g(f(x))的解析式;
(3)解不等式g(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計算下列極限:
(1)$\underset{lim}{n→∞}$($\sqrt{n+1}$-$\sqrt{n}$);
(2)$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n}$);
(3)$\underset{lim}{n→∞}$$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合M={x|y=$\frac{1}{\sqrt{4-2x}}$+1},集合N={y|y=-x2+4x-2},則集合M與集合N的關(guān)系為( 。
A.M?NB.M?NC.M=ND.M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若一個函數(shù)恰有兩個零點,則稱這樣的函數(shù)為“雙胞胎”函數(shù),若函數(shù)f(x)=|ax-lnx+$\frac{a-1}{x}$|-a-3(a<0)為“雙胞胎”函數(shù),則實數(shù)a的取值范圍為( 。
A.(-$\frac{2}{3}$,+∞)B.(-∞,-$\frac{2}{3}$)C.(-$\frac{2}{3}$,0)D.(-1,-$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在正方形ABCD中,AB=2,點E、F分別在邊AB、DC上,M為AD的中點,且$\overrightarrow{ME}•\overrightarrow{MF}$=0,則△MEF的面積的取值范圍為( 。
A.$[{1,\frac{5}{4}}]$B.[1,2]C.$[{\frac{1}{2},\frac{5}{4}}]$D.$[{\frac{1}{2},\frac{3}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{1}{{2x-{x^2}}}$,則f(x)的值域是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)y=f(t)是某港口水的深度關(guān)于時間t(時)的函數(shù),其中0<t≤24,下表是該港口某一天從0至24時記錄的時間t與水深y的關(guān)系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt-φ)的圖象.根據(jù)上述數(shù)據(jù),函數(shù)y=f(t)的解析式為(  )
A.y=12+3sin$\frac{πt}{6}$,t∈[0,24]B.y=12+3sin($\frac{πt}{6}$+π),t∈[0,24]
C.y=12+3sin$\frac{πt}{12}$,t∈[0,24]D.y=12+3sin($\frac{πt}{12}$+$\frac{π}{2}$),t∈[0,24]

查看答案和解析>>

同步練習(xí)冊答案