分析 (Ⅰ)由已知及周期公式可求ω,由$(\frac{5π}{24},0)$為f(x)的圖象的對稱中心,且0<φ<$\frac{π}{2}$可求φ,可得函數(shù)解析式,$令2kπ-π≤2x+\frac{π}{12}≤2kπ$,即可解得f(x)的單調(diào)遞增區(qū)間(Ⅱ)由f(-$\frac{A}{2}$)=$\sqrt{2}$結(jié)合A的范圍可求得A的值,由余弦定理可求得:a2=(b+c)2-3bc,從而有${(b+c)^2}=9+3bc≤9+3{(\frac{b+c}{2})^2}$,利用基本不等式即可求得b+c的最大值.
解答 解:(Ⅰ)∵f(x)的最小正周期T=π,
∴ω=2,
∵$(\frac{5π}{24},0)$為f(x)的圖象的對稱中心,
$\begin{array}{l}∴2×\frac{5π}{24}+φ=kπ+\frac{π}{2}\;\;且0<φ<\frac{π}{2}\\∴φ=\frac{π}{12}\end{array}$
∴$f(x)=2cos(2x+\frac{π}{12})$,…(4分)
∴$令2kπ-π≤2x+\frac{π}{12}≤2kπ$,可解得:$kπ-\frac{13π}{24}≤x≤kπ-\frac{π}{24}$,k∈Z.
故$f(x)單調(diào)遞增區(qū)間為:[{kπ-\frac{13π}{24},kπ-\frac{π}{24}}]k∈Z$.…(6分)
(Ⅱ)∵$f(-\frac{A}{2})=2cos(A-\frac{π}{12})=\sqrt{2}∴cos(A-\frac{π}{12})=\frac{{\sqrt{2}}}{2}$,
∵$-\frac{π}{12}<A-\frac{π}{12}<\frac{11π}{12}\;\;\;\;∴A-\frac{π}{12}=\frac{π}{4}∴A=\frac{π}{3}$,…(9分)
∵a2=b2+c2-2bccosA=(b+c)2-3bc,
∴${(b+c)^2}=9+3bc≤9+3{(\frac{b+c}{2})^2}$,
∴b+c≤6,當(dāng)且僅當(dāng)b=c=3時取等號.
故b+c的最大值為6…(12分)
點評 本題主要考查了余弦定理,基本不等式的應(yīng)用,考查了三角函數(shù)的圖象和性質(zhì),屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 17 | C. | 19 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-2)∪($\frac{1+\sqrt{17}}{4}$,+∞) | C. | (-2,$\frac{1+\sqrt{17}}{4}$) | D. | (-∞,-2)∪(1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com