15.已知集合A={x|-2≤x≤17},B={x|2m+3≤x≤3m-1},若A∪B⊆A,求實(shí)數(shù)m的取值范圍.

分析 由A∪B⊆A說明集合B是集合A的子集,當(dāng)集合B是空集時(shí),符合題目條件,求出此時(shí)的m的范圍,當(dāng)B不是空集時(shí),由兩集合端點(diǎn)值之間的關(guān)系列不等式組求出m的范圍,最后把兩種情況求出的m的范圍取并集即可.

解答 解:由題知,A∪B⊆A分兩種情況:①B=∅時(shí),2m+3>3m-1,∴m<4;…(4分)
②B≠Φ時(shí),2m+3≥-2且3m-1≤17且2m+3≤3m-1,∴4≤m≤6.…(9分)
綜上所述m≤6.…(10分)

點(diǎn)評 本題考查了并集及其運(yùn)算,考查了集合之間的關(guān)系,考查了分類討論的數(shù)學(xué)思想,解答此題的關(guān)鍵是由集合之間的關(guān)系得出它們的端點(diǎn)值之間的關(guān)系,是基礎(chǔ)題也是易錯(cuò)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知正四棱臺ABCD-A1B1C1D1的高為2,A1B1=1,AB=2,則該四棱臺的側(cè)面積等于3$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,若a=7,b=8,cosC=$\frac{13}{14}$,求最大角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x+m|-4,m∈R
(1)若g(x)=f(x)+4為奇函數(shù),求實(shí)數(shù)m的值;
(2)當(dāng)m=-3時(shí),求函數(shù)f(x)在x∈[2,4]上的值域;
(3)若f(x)<0對x∈(0,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),他們在培訓(xùn)期間8次模擬考試的成績?nèi)缦拢?br />甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學(xué)生成績的莖葉圖,并求學(xué)生乙成績的平均數(shù)和方差;
(2)從甲同學(xué)超過80分的6個(gè)成績中任取兩個(gè),求這兩個(gè)成績中至少有一個(gè)超過90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=f(x)的定義域是(-1,1),則函數(shù)f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1)B.(-1,1)C.(-3,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=sin(2x+$\frac{π}{6}$),則函數(shù)f(x)的圖象( 。
A.關(guān)于點(diǎn)($\frac{5π}{12}$,0)對稱B.關(guān)于點(diǎn)($\frac{π}{2}$,0)對稱
C.關(guān)于直線x=$\frac{5π}{12}$對稱D.關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題中正確的個(gè)數(shù)是( 。
①過異面直線a,b外一點(diǎn)P有且只有一個(gè)平面與a,b都平行;
②異面直線a,b在平面α內(nèi)的射影相互垂直,則a⊥b;
③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
④直線a,b分別在平面α,β內(nèi),且a⊥b,則α⊥β.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m為實(shí)數(shù))為偶函數(shù),記a=f(2-3),b=f(3m),c=f(log0.53),則( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步練習(xí)冊答案