13.若$\frac{1}{a}<\frac{1}<0$,有下面四個(gè)不等式:①|(zhì)a|>|b|;②a<b;③a+b<ab,④a3>b3,正確的不等式的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 由條件可得 0>a>b,代入各個(gè)選項(xiàng),檢驗(yàn)各個(gè)選項(xiàng)是否正確.

解答 解:由$\frac{1}{a}<\frac{1}<0$,可得 0>a>b,∴|a|<|b|,故①②不成立;
∴a+b<0<ab,a3>b3都成立,故③④一定正確,
故選 C.

點(diǎn)評(píng) 本題考查不等式的性質(zhì)的應(yīng)用,解題的關(guān)鍵是判斷出 0>a>b.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知曲線C是C1上半圓:x2+y2=m2(y≥0,m>0)與部分圓C2:x2+(y+1)2=n2(y≤0,n<0)連接而成的,C1,C2交于x軸上的公共點(diǎn)為A,B(A在B的左側(cè)),曲線C與y軸交于D、E兩點(diǎn),若|DE|=2+$\sqrt{2}$.
(1)求m、n的值:
(2)過(guò)B作直線MN與C1,C2交于和A,B不同的兩點(diǎn)M,N,問(wèn)是否存在M、N,使AM⊥AN?若存在,求出直線MN方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.不等式(x-2)(3-x)>0的解集是( 。
A.(-∞,2)B.(3,+∞)C.(2,3)D.(-∞,2)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如果a<b,那么下列不等式一定成立的是( 。
A.c-a<c-bB.-2a>-2bC.a+c>b+cD.a+d>b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.直線過(guò)(-1,3)且在x,y軸上的截距的絕對(duì)值相等,則直線方程為3x+y=0、x-y+4=0,或x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)A(-1,0),B(1,4),動(dòng)點(diǎn)P滿(mǎn)足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求:
(1)動(dòng)點(diǎn)P的軌跡方程;
(2)若點(diǎn)Q是關(guān)于直線P關(guān)于直線y=x-4的對(duì)稱(chēng)點(diǎn),求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若數(shù)列{an}為無(wú)窮等比數(shù)列,且$\underset{lim}{n→∞}$(a1+a2+a3+…+an)=$\frac{1}{7}$,則a1的取值范圍是{x|$0<x<\frac{2}{7}$,且$x≠\frac{1}{7}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知命題p:點(diǎn)M(1,3)不在圓(x+m)2+(y-m)2=16的內(nèi)部,命題q:“曲線${C_1}:\frac{x^2}{m^2}+\frac{y^2}{2m+8}=1$表示焦點(diǎn)在x軸上的橢圓”,命題s:“曲線${C_2}:\frac{x^2}{m-t}+\frac{y^2}{m-t-1}=1$表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.給出下列命題:
①函數(shù)$f(x)=\sqrt{1-x}+\sqrt{x-1}$既是奇函數(shù),又是偶函數(shù);
②f(x)=x和$g(x)=\frac{x^2}{x}$為同一函數(shù);
③定義在R上的奇函數(shù)f(x)在(-∞,0)上單調(diào)遞減,則f(x)在(-∞,+∞)上單調(diào)遞減;
④函數(shù)$y=\frac{x}{{2{x^2}+1}}$的值域?yàn)?[-\frac{{\sqrt{2}}}{4},\frac{{\sqrt{2}}}{4}]$;
其中正確命題的序號(hào)是④.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案