2.化簡:($\overrightarrow{AD}$+$\overrightarrow{MB}$)+($\overrightarrow{BC}$+$\overrightarrow{CM}$)=$\overrightarrow{AD}$.

分析 去括號,則后三個向量的和為零向量.

解答 解:($\overrightarrow{AD}$+$\overrightarrow{MB}$)+($\overrightarrow{BC}$+$\overrightarrow{CM}$)=$\overrightarrow{AD}+(\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CM})$=$\overrightarrow{AD}+\overrightarrow{0}$=$\overrightarrow{AD}$.
故答案為:$\overrightarrow{AD}$.

點評 本題考查了平面向量的加法及其幾何意義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{ax}{{x}^{2}+b}$(a>0,b>1),滿足:f(1)=1,且f(x)在R上有最大值$\frac{3\sqrt{2}}{4}$.
(I)求f(x)的解析式;
(Ⅱ)當x∈[1,2]時,不等式f(x)≤$\frac{3m}{({x}^{2}+2)|x-m|}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系xOy中,以原點O為極點,以x軸正半軸為極軸,曲線C的極坐標方程為ρ=$\frac{sinθ}{co{s}^{2}θ}$.
(Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)過點P(0,2)作斜率為1直線l與曲線C交于A,B兩點,試求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,cosA=$\frac{1}{3}$,3sinB=2sinC,且△ABC的面積為2$\sqrt{2}$,則邊BC的長為( 。
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.某單位對職員中的老年、中年、青年進行健康狀況凋查,其中老年、中年、青年職員的人數(shù)之比為k:5:3,現(xiàn)用分層抽樣的方法抽出一個容量為120的樣本,已知在老年職員中抽取了24人,則在青年職員中抽取的人數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+$\frac{1}{a}$)x2+x(a>0)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上的點$M(2,\sqrt{2})$到兩焦點的距離之和等于$4\sqrt{2}$.
(Ⅰ)求橢圓G的方程;
(Ⅱ)經(jīng)過橢圓G右焦點F的直線m(不經(jīng)過點M)與橢圓交于A,B兩點,與直線l:x=4相交于C點,記直線MA,MB,MC的斜率分別為k1,k2,k3.求證:$\frac{{{k_1}+{k_2}}}{k_3}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸長為4,離心率為$\frac{{\sqrt{6}}}{3}$.
(I)求橢圓C的方程;
(Ⅱ)試判斷命題“若過點M(1,0)的動直線l交橢圓于A,B兩點,則在直角坐標平面上存在定點N,使得以線段AB為直徑的圓恒過點N”的真假,若為真命題,求出定點N的坐標;若為假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=loga$\frac{x+1}{x-1}$(a>0,且a≠1)
(1)判斷f(x)的奇偶性并證明;
(2)若對于x∈[2,4],恒有f(x)>loga$\frac{m}{(x-1)•(7-x)}$成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案