9.與兩個(gè)相交平面的距離都相等的點(diǎn)必在( 。
A.一條直線上B.一個(gè)平面上C.兩條直線上D.兩個(gè)平面上

分析 利用類比的思想,很容易得出結(jié)論.

解答 解:類比直線中的情況,可得與兩個(gè)相交平面的距離都相等的點(diǎn)必在兩個(gè)平面上.
故選:D.

點(diǎn)評(píng) 本題考查類比思想,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某小型餐館一天裝要購買A,B兩種蔬菜,A,B蔬菜每千克的單價(jià)分別為2元和3元,根據(jù)需要,A蔬菜至少要買6千克,B蔬菜至少要買4千克,而且一天中購買這兩種蔬菜的總費(fèi)用不能超過60元,如果這兩種蔬菜加工后全部賣出,A,B兩種蔬菜交工后每千克分別為2元和1元,則該餐館的最大利潤最大為52元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2-2x+alnx
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)存在兩個(gè)極值點(diǎn)x1、x2(x1<x2),①求實(shí)數(shù)a的范圍;②證明:$\frac{f{(x}_{1})}{{x}_{2}}$>-$\frac{3}{2}$-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.$\overrightarrow{a}$,$\overrightarrow$為非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則( 。
A.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$與$\overrightarrow$方向相同B.$\overrightarrow{a}$,$\overrightarrow$是共線向量且方向相反
C.$\overrightarrow{a}$=$\overrightarrow$D.$\overrightarrow{a}$,$\overrightarrow$無論什么關(guān)系均可

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.連接原點(diǎn)O和拋物線2y=x2上的動(dòng)點(diǎn)M,延長OM到P點(diǎn),使|OM|=|MP|,求P點(diǎn)的軌跡方程,并說明它是何曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知cos($\frac{π}{2}$+α)=-$\frac{1}{3}$,且α是第三象限角,則cos(α-2π)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|x2-x-6=0},B={x|ax=6},若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.將一個(gè)三棱錐的各面延展成平面后.這些將空間分成幾部分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓M的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,過M上一點(diǎn)$P({1,\frac{3}{2}})$的直線l1,l2與橢圓M分別交于不同于P的另一點(diǎn)A,B,設(shè)l1,l2的斜率分別為k1,k2,且${k_1}•{k_2}=-\frac{3}{4}$.
(1)求橢圓M的方程;
(2)直線AB是否過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案