科目: 來(lái)源: 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求函數(shù)的解析式;并判斷在上的單調(diào)性(不要求證明);
(2)解不等式.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知的反函數(shù)為,.
(1)若,求的取值范圍D;
(2)設(shè)函數(shù),當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)=+(>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/1/skgw31.gif" style="vertical-align:middle;" />6,+∞,求的值;
(2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說(shuō)明理由;
(3)對(duì)函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫(xiě)出結(jié)論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知某商品的價(jià)格上漲x%,銷(xiāo)售的數(shù)量就減少mx%,其中m為正的常數(shù)。
(1)當(dāng)m=時(shí),該商品的價(jià)格上漲多少,就能使銷(xiāo)售的總金額最大?
(2)如果適當(dāng)?shù)貪q價(jià),能使銷(xiāo)售總金額增加,求m的取值范圍
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0
有兩個(gè)實(shí)根為x1="3," x2=4.(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式;.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)二次函數(shù)f(x)滿(mǎn)足且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間上,y= f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)設(shè)二次函數(shù)滿(mǎn)足下列條件:
①當(dāng)∈R時(shí),的最小值為0,且f (-1)=f(--1)成立;
②當(dāng)∈(0,5)時(shí),≤≤2+1恒成立。
(1)求的值;
(2)求的解析式;
(3)求最大的實(shí)數(shù)m(m>1),使得存在實(shí)數(shù)t,只要當(dāng)∈時(shí),就有成立。
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/09/f/untro1.gif" style="vertical-align:middle;" />(為實(shí)數(shù)).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;
(3)函數(shù)在上的最大值及最小值,并求出函數(shù)取最值時(shí)的值.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)若定義在上的函數(shù)同時(shí)滿(mǎn)足下列三個(gè)條件:
①對(duì)任意實(shí)數(shù)均有成立;
②;
③當(dāng)時(shí),都有成立。
(1)求,的值;
(2)求證:為上的增函數(shù)
(3)求解關(guān)于的不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com