相關習題
 0  153740  153748  153754  153758  153764  153766  153770  153776  153778  153784  153790  153794  153796  153800  153806  153808  153814  153818  153820  153824  153826  153830  153832  153834  153835  153836  153838  153839  153840  153842  153844  153848  153850  153854  153856  153860  153866  153868  153874  153878  153880  153884  153890  153896  153898  153904  153908  153910  153916  153920  153926  153934  266669 

科目: 來源: 題型:解答題

如圖,在四棱錐P­ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2,E是PB上任意一點.

(1)求證:AC⊥DE;
(2)已知二面角A­PB­D的余弦值為,若E為PB的中點,求EC與平面PAB所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖所示,在矩形ABCD中,AB=3,AD=6,BD是對角線,過點A作AE⊥BD,垂足為O,交CD于E,以AE為折痕將△ADE向上折起,使點D到點P的位置,且PB=.

(1)求證:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖(1),四邊形ABCD中,E是BC的中點,DB=2,DC=1,BC=,AB=AD=.將圖(1)沿直線BD折起,使得二面角A­BD­C為60°,如圖(2).

(1)求證:AE⊥平面BDC;
(2)求直線AC與平面ABD所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在三棱柱ABC­A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)證明:在線段BC1上存在點D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點,求證:FB1⊥平面BCC1B1.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E為CD上一點,且CE=3DE.

(1)求證:AE⊥平面SBD.
(2)M,N分別為線段SB,CD上的點,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D為AB的中點,AC=BC=BB1.

求證:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點E,F,G分別是AB,AD,CD的中點,計算:

(1)·.
(2)EG的長.
(3)異面直線EG與AC所成角的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在直三棱柱(側棱和底面垂直的棱柱)中,,,,且滿足.

(1)求證:平面側面;
(2)求二面角的平面角的余弦值。

查看答案和解析>>

科目: 來源: 題型:解答題

如圖甲,△ABC是邊長為6的等邊三角形,E,D分別為AB、AC靠近B、C的三等分點,點G為BC邊的中點.線段AG交線段ED于F點,將△AED沿ED翻折,使平面AED⊥平面BCDE,連接AB、AC、AG形成如圖乙所示的幾何體。

(1)求證BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.

查看答案和解析>>

同步練習冊答案