相關(guān)習(xí)題
 0  209921  209929  209935  209939  209945  209947  209951  209957  209959  209965  209971  209975  209977  209981  209987  209989  209995  209999  210001  210005  210007  210011  210013  210015  210016  210017  210019  210020  210021  210023  210025  210029  210031  210035  210037  210041  210047  210049  210055  210059  210061  210065  210071  210077  210079  210085  210089  210091  210097  210101  210107  210115  266669 

科目: 來(lái)源: 題型:

已知A(x1,y1),B(x2,y2)是橢圓C:x2+2y2=4上兩點(diǎn),點(diǎn)M的坐標(biāo)為(1,0).
(Ⅰ)當(dāng)A,B關(guān)于點(diǎn)M(1,0)對(duì)稱(chēng)時(shí),求證:x1=x2=1;
(Ⅱ)當(dāng)直線AB經(jīng)過(guò)點(diǎn)(0,3)時(shí),求證:△MAB不可能為等邊三角形.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
a2-1
=1的離心率為
2
2
,上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上,且異于點(diǎn)A、B,直線AP、BP與直線y=-3分別相交于點(diǎn)M、N,設(shè)直線AP、BP的斜率分別為k1、k2
(Ⅰ)求橢圓C的方程;
(Ⅱ)證明:k1•k2為定值;
(Ⅲ)求直線MN長(zhǎng)度的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且過(guò)點(diǎn)(0,-1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
=t
OP
(其中O為坐標(biāo)原點(diǎn)),求整數(shù)t的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

求函數(shù)y=log(x+1)(16-4x)的定義域.

查看答案和解析>>

科目: 來(lái)源: 題型:

在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD為菱形,O為A1C1
與B1D1交點(diǎn),已知AA1=AB=1,∠BAD=60°.
(Ⅰ)求證:A1C1⊥平面B1BDD1
(Ⅱ)求證:AO∥平面BC1D;
(Ⅲ)設(shè)點(diǎn)M在△BC1D內(nèi)(含邊界),且OM⊥B1D1,說(shuō)明滿(mǎn)足條件的點(diǎn)M的軌跡,并求OM的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)滿(mǎn)足:
   ①對(duì)任意的m1,m2,m1≠m2,當(dāng)f(m1)=f(m2)時(shí),有m1+m2<0成立;
   ②對(duì)?x1,x2∈[-1,1],|f(x1)-f(x2)≤e-1恒成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

化簡(jiǎn):
3
sin240°
-
1
cos240°

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的上頂點(diǎn)為B1,左、右焦點(diǎn)為F1、F2,且F2和拋物線C2:y2=4x的焦點(diǎn)重合,△F1B1F2是正三角形.
(1)求橢圓C1的方程;
(2)過(guò)F2作直線l,與C1交于A、B兩點(diǎn),與C2交于C、D兩點(diǎn),求
S△F1CD
S△F1AB
的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x2+1,求f(2x+1).

查看答案和解析>>

科目: 來(lái)源: 題型:

集合A={x|-2≤x≤5},B={x|k+1≤x≤2k-1},
(1)若B⊆A,求k的取值范圍;
(2)若B?A,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案