相關(guān)習(xí)題
 0  210189  210197  210203  210207  210213  210215  210219  210225  210227  210233  210239  210243  210245  210249  210255  210257  210263  210267  210269  210273  210275  210279  210281  210283  210284  210285  210287  210288  210289  210291  210293  210297  210299  210303  210305  210309  210315  210317  210323  210327  210329  210333  210339  210345  210347  210353  210357  210359  210365  210369  210375  210383  266669 

科目: 來源: 題型:

甲、乙兩人玩猜數(shù)字游戲,規(guī)則如下:
①連續(xù)競猜3次,每次相互獨(dú)立;
②每次竟猜時,先由甲寫出一個數(shù)字,記為a,再由乙猜測甲寫的數(shù)字,記為b,已知a,b∈{0,1,2,3,4,5},若|a-b|≤1,則本次競猜成功;
③在3次競猜中,至少有2次競猜成功,則兩人獲獎.
(1)求每一次競猜成功的概率;
(2)求甲乙兩人玩此游戲獲獎的概率;
(3)現(xiàn)從6人組成的代表隊(duì)中選4人參加此游戲,這6人中有且僅有2對雙胞胎,記選出的4人中含有雙胞胎的對數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目: 來源: 題型:

在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥面ABCD,E為PD之中點(diǎn),PA=2AB=2
(Ⅰ)求證:CE∥面PAB;
(Ⅱ)求二面角C-PD-A的平面角的正弦;
(Ⅲ)在PC上是否存在點(diǎn)F使得PC⊥面AEF,若存在,說明位置:若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知冪函數(shù)f(x)=x-m2+m+2(m∈Z)在(0,+∞)上單調(diào)遞增.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)-ax+1,a為實(shí)常數(shù),求g(x)在區(qū)間[-1,1]上的最小值.

查看答案和解析>>

科目: 來源: 題型:

2013年11月27日,國家假日辦公布了2014年假期安排的三套方案,為了了解老師對假期方案的看法,某中學(xué)對全校300名教師進(jìn)行了問卷調(diào)差(每人選擇其中的一項(xiàng)),得到如下數(shù)據(jù):
所持態(tài)度 喜歡方案A 喜歡方案B 喜歡方案C 三種方案都不喜歡
人數(shù)(單位:人) 60 90 120 30
(1)若從這300人中按照分層抽樣的方法隨機(jī)抽取10人進(jìn)行座談,再從這10人中隨機(jī)抽取3人探討學(xué)校假期的安排.求這3人中喜歡方案A與B的人數(shù)之和恰好為2人的概率;
(2)現(xiàn)讓(1)中所抽取的10人對學(xué)生的寒假放假時間(15天或20天,每人選擇其中的一項(xiàng))進(jìn)行投票,規(guī)定:若這10人中有7人或7人以上都支持其中的一項(xiàng),則規(guī)定寒假放假的天數(shù)為對應(yīng)的投票天數(shù),若這兩種情況的投票數(shù)都達(dá)不到7票,則規(guī)定放假25天.求該校寒假放假天數(shù)的分布列與期望值(精確到整數(shù)天).

查看答案和解析>>

科目: 來源: 題型:

從5名女同學(xué)和4名男同學(xué)中選出4人參加演講比賽,分別按下列要求,各有多少種不同選法?
(1)男、女同學(xué)各2名;
(2)男、女同學(xué)分別至少有1名.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=sinx+
3
cosx+2,x∈R
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值,并指出此時x的值.
(3)求函數(shù)f(x)在[0,2π]的單調(diào)增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,a,b,c為角A,B,C所對的邊,且(b-2c)cosA=a-2acos2
B
2

(1)求角A的值;
(2)若BC邊上的中線長為
3
,求b+c的最大值.

查看答案和解析>>

科目: 來源: 題型:

鄭州是一個缺水的城市,人均水資源占有量僅為全國的十分之一,政府部門提出“節(jié)約用水,我們共同的責(zé)任”倡議,某用水量較大的企業(yè)積極響應(yīng)政府號召對生產(chǎn)設(shè)備進(jìn)行技術(shù)改造,以達(dá)到節(jié)約用水的目的,下表提供了該企業(yè)節(jié)約用水技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)用水y(噸)的幾組對照數(shù)據(jù):
x 2 3 4 5
y 3 3.5 4.7 6
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),若x,y之間是線性相關(guān),求y關(guān)于x的線性回歸方程
y
=bx+a;
(Ⅱ)已知該廠技術(shù)改造前100噸甲產(chǎn)品的生產(chǎn)用水為130噸,試根據(jù)(Ⅰ)求出的線性回歸方程,預(yù)測技術(shù)改造后生產(chǎn)100噸甲產(chǎn)品的用水量比技術(shù)改造前減少多少噸水?

查看答案和解析>>

科目: 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
100
+
y2
64
=1的兩個焦點(diǎn),P是橢圓上任一點(diǎn)
(1)若∠F1PF2=
π
3
,求△F1PF2的面積;
(2)求|PF1|•|PF2|的最大值.

查看答案和解析>>

科目: 來源: 題型:

如圖,直棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=
2
2
AB.
(Ⅰ)證明:BC1∥平面A1CD;   
(Ⅱ)求二面角D-A1C-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案