相關習題
 0  211131  211139  211145  211149  211155  211157  211161  211167  211169  211175  211181  211185  211187  211191  211197  211199  211205  211209  211211  211215  211217  211221  211223  211225  211226  211227  211229  211230  211231  211233  211235  211239  211241  211245  211247  211251  211257  211259  211265  211269  211271  211275  211281  211287  211289  211295  211299  211301  211307  211311  211317  211325  266669 

科目: 來源: 題型:

設Sn為等差數列{an}的前n項和,已知S3=a7,a8-2a3=3.
(1)求an;
(2)設bn=
1
Sn
,數列{bn}的前n項和記為Tn,求Tn

查看答案和解析>>

科目: 來源: 題型:

某學校對教師的年齡及學歷狀況進行調查,其結果(人數分布)如下表:
學歷 35歲以下 35-50歲 50歲以上
本科 80 30 20
研究生 x 20 y
(Ⅰ)在35-50歲年齡段的教師中用分層抽樣的方法抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1人的學歷為研究生的概率;
(Ⅱ)若對全體教師按年齡狀況用分層抽樣的方法抽取N個人,其中50歲以上的有10人,再從這N個人中隨機抽取出1人,此人的年齡在50歲以上的概率為
5
39
,求N的值;
(Ⅲ)在(Ⅱ)的條件下,若抽取的N個人中35歲以下的有48人,求x和y的值.

查看答案和解析>>

科目: 來源: 題型:

已知等比數列{an}的公比為q,且滿足an+1<an,a1+a2+a3=
13
9
,a1a2a3=
1
27

(1)求數列{an}的通項公式;
(2)記數列{(2n-1)•an}的前n項和為Tn,求Tn

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點M(1,-
6
2
),F(-
2
,0)是其左焦點,P,Q是橢圓C上不同的兩個動點,且|PF|,|MF|,|QF|成等差數列.
(Ⅰ)求橢圓C的方程;
(Ⅱ)證明:線段PQ的垂直平分線經過一個定點.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
.且過點(3,-1).
(1)求橢圓C的方徎;
(2)若動點P在直線l:x=-2
2
上,過P作直線交橢圓C于M,N兩點,使得PM=PN,再過P作直線l′⊥MN,直線l′是否恒過定點,若是,請求出該定點的坐標;若否,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,∠ACB=60°,∠ABC=θ,AB=6
(1)求△ABC面積的最大值.
(2)若△ABC的周長為6
3
+6,求θ的值.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1(-c,0),F2(c,0),已知點(1,e)和(e,
3
2
)都在橢圓C上,其中e為橢圓C的離心率.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:y=kx+m與橢圓C相交于P,Q兩點,若在橢圓C上存在點R,使四邊形OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個頂點為M(0,1),F1,F2為其兩焦點,△MF1F2的周長為2
5
+4;
(1)求橢圓C的標準方程;
(2)以M(0,1)為直角頂點作橢圓C的內接等腰直角三角形MAB,這樣的等腰直角三角形是否存在?若存在,請說明有幾個,并求出直角邊所在的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

以直角坐標系的原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的極坐標方程為θ=
π
4
(ρ∈R),它與曲線
x=1+2cosα
y=2+2sinα
(α為參數)相交于A和B兩點,則|AB|=
 

查看答案和解析>>

科目: 來源: 題型:

某高校自主招生面試成績的莖葉圖和頻率分布直方圖均受到不同程度的破壞,其可見部分信息如圖所示,據此解答下列問題;
(Ⅰ)求參加此次高校自主招生面試的人數n、面試成績的中位數及分數分別在[80,90),[90,100)內的人數;
(Ⅱ)若從面試成績在[80,100)內的學生中任選兩人進行隨機復查,求恰好有一人分數在[90,100)內的概率.

查看答案和解析>>

同步練習冊答案