相關習題
 0  212640  212648  212654  212658  212664  212666  212670  212676  212678  212684  212690  212694  212696  212700  212706  212708  212714  212718  212720  212724  212726  212730  212732  212734  212735  212736  212738  212739  212740  212742  212744  212748  212750  212754  212756  212760  212766  212768  212774  212778  212780  212784  212790  212796  212798  212804  212808  212810  212816  212820  212826  212834  266669 

科目: 來源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的離心率e=
3
2
,短軸長為2,點A(x1,y1),B(x2,y2)是橢圓上的兩點,
m
=(
x1
b
,
y1
a
)
n
=(
x2
b
,
y2
a
)
,且
m
n
=0

(1)求橢圓方程;
(2)若直線AB過橢圓的焦點F(0,c)(c為半焦距),求直線AB的斜率;
(3)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,直線l:y=x+2與原點為圓心,以橢圓C的短軸長為直徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點M(0,2)的直線l1與橢圓C交于G,H兩點.設直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得△PGH是以GH為底邊的等腰三角形.如果存在,求出實數m的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數f(x)=ex+ax(a∈R),g(x)=exlnx(e為自然對數的底數).
(Ⅰ)設曲線y=f(x)在x=1處的切線為l,點(1,0)到直線l的距離為
2
2
,求a的值;
(Ⅱ)若對于任意實數x≥0,f(x)>0恒成立,試確定實數a的取值范圍;
(Ⅲ)當a=-1時,函數M(x)=g(x)-f(x)在[1,e]上是否存在極值?若存在,求出極值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知過點P(2,-1)的直線l交橢圓
x 2
8
+
y 2
4
=1
于M、N兩點,B(0,2)是橢圓的一個頂點,若線段MN的中點恰為點P.
(Ⅰ)求直線l的方程;
(Ⅱ)求△BMN的面積.

查看答案和解析>>

科目: 來源: 題型:

己知命題p:橢圓
x2
10-m
+
y2
m-2
=1
,長軸在y軸上.
(Ⅰ)若橢圓焦距為4,求實數m的值;
(Ⅱ)命題q:關于x的不等式x2-2x+m>0的解集是R;若“p∧q”是假命題,“p∨q”是真命題,求實數m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知橢圓C的方程為
x2
12
+
y2
b2
=1(b2<12)
,且長軸長與焦距之比為
3
2
,圓O的圓心在原點O,且經過橢圓C的短軸頂點.
(1)求橢圓C和圓O的方程;
(2)是否存在同時滿足下列條件的直線l:
    ①與圓O相切與點M(M位于第一象限);
    ②與橢圓C相交于A、B兩點,使得
OA
OB
=2
.若存在,求出此直線方程,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

在對某漁業(yè)產品的質量調研中,從甲、乙兩地出產的該產品中各隨機抽取10件,測量該產品中某種元素的含量(單位:毫克).如圖是測量數據的莖葉圖:

規(guī)定:當產品中的此種元素含量≥15毫克時為優(yōu)質品.
(Ⅰ)試用上述樣本數據估計甲、乙兩地該產品的優(yōu)質品率(優(yōu)質品件數/總件數);
(Ⅱ)從乙地抽出的上述10件產品中,隨機抽取3件,求抽到的3件產品中優(yōu)質品數ξ的分布列及數學期望E(ξ).

查看答案和解析>>

科目: 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的頂點為A1,A2,B1,B2,焦點為F1,F2,|A1B2|=
7
,S?A1B1A2B2=2S ?B1F1B2F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線m過Q(1,1),且與橢圓相交于M,N兩點,當Q是MN的中點時,求直線m的方程.
(Ⅲ)設n為過原點的直線,l是與n垂直相交于P點且與橢圓相交于兩點A,B的直線,|
OP
|=1
,是否存在上述直線l使以AB為直徑的圓過原點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點分別為F1,F2,離心率為
2
2
,且過點(2,
2
)

(1)求橢圓C的標準方程;
(2)過點F1作直線l1與橢圓交于M,N兩點,過點F2作直線l2與橢圓交于P,Q兩點,且直線l1,l2互相垂直,試問
1
|MN|
+
1
|PQ|
是否為定值?如果是,求出該定值;如果不是,求出其取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
與雙曲線
x2
4-v
+
y2
1-v
=1(1<v<4)
有公共焦點,過橢圓C的右頂點B任意作直線l,設直線l交拋物線y2=2x于P、Q兩點,且OP⊥OQ.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在橢圓C上,是否存在點R(m,n)使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點M、N,且△OMN的面積最大?若存在,求出點R的坐標及對應的△OMN的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案