相關(guān)習(xí)題
 0  212697  212705  212711  212715  212721  212723  212727  212733  212735  212741  212747  212751  212753  212757  212763  212765  212771  212775  212777  212781  212783  212787  212789  212791  212792  212793  212795  212796  212797  212799  212801  212805  212807  212811  212813  212817  212823  212825  212831  212835  212837  212841  212847  212853  212855  212861  212865  212867  212873  212877  212883  212891  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=(x+1)2
(1)當(dāng)1≤x≤m時,不等式f(x-3)≤x恒成立,求實數(shù)m的最大值;
(2)在曲線y=f(x+t)上存在兩點關(guān)于直線y=x對稱,求t的取值范圍;
(3)在直線y=-
1
4
上取一點P,過點P作曲線y=f(x+t)的兩條切線l1、l2,求證:l1⊥l2

查看答案和解析>>

科目: 來源: 題型:

如圖1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,點E、F分別是AB、CD的中點,點G在EF上,沿EF將梯形AEFD翻折,使平面AEFD⊥平面EBCF,如圖2.

(Ⅰ)當(dāng)AG+GC最小時,求證:BD⊥CG;
(Ⅱ)當(dāng)2VB-ADGE=VD-GBCF時,求二面角D-BG-C平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,兩個焦點分別為F1和F2,橢圓C上一點到F1和F2的距離之和為12.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 設(shè)點B是橢圓C 的上頂點,點P,Q是橢圓上;異于點B的兩點,且PB⊥QB,求證直線PQ經(jīng)過y軸上一定點.

查看答案和解析>>

科目: 來源: 題型:

如圖,ABCD是邊長為1百米的正方形區(qū)域,現(xiàn)規(guī)劃建造一塊景觀帶△ECF,其中動點E、F分別在CD、BC上,且△ECF的周長為常數(shù)a(單位:百米).
(1)求景觀帶面積的最大值;
(2)當(dāng)a=2時,請計算出從A點欣賞此景觀帶的視角(即∠EAF).

查看答案和解析>>

科目: 來源: 題型:

求由約束條件
x+y≤5
2x+y≤6
x≥0,y≥0
確定的平面區(qū)域的面積S和目標(biāo)函數(shù)z=4x+3y的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(cos(2x-
π
3
),cosx+sinx),
b
=(1,cosx-sinx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知f(A)=
3
2
,a=2,B=
π
3
,求△ABC的面積S.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點M(0,
3
),F(xiàn)為左焦點,且∠OFM=60°,O是坐標(biāo)原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P是橢圓上位于x軸上方的一點,且滿足PF⊥x軸.設(shè)A,B是橢圓C上的兩個動點,且
PA
+
PB
PO
(0<λ<4,且λ≠2).求證:直線AB的斜率等于橢圓C的離心率;
(Ⅲ)在(Ⅱ)的條件下,求△OAB面積的最大值,并求此時λ的值.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線的頂點在原點,焦點F與雙曲線x2-
y2
4
=1
的右頂點重合.
(1)求拋物線的方程;
(2)若直線l經(jīng)過焦點F,且傾斜角為60°,與拋物線交于A、B兩點,求:弦長|AB|.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知橢圓C:x2+
y2
a2
=1(a>1)
 的離心率為e,點F為其下焦點,點O為坐標(biāo)原點,過F的直線l:y=mx-c(其中c=
a2-1
)與橢圓C相交于P,Q兩點,且滿足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)試用a表示m2;
(Ⅱ)求e的最大值;
(Ⅲ)若 e∈(
1
3
,
1
2
)
,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖1,已知⊙O的直徑AB=4,點C、D為⊙O上兩點,且∠CAB=45°,∠DAB=60°,F(xiàn)為弧BC的中點.將⊙O沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖2).
(Ⅰ)求證:OF∥AC;
(Ⅱ)在弧BD上是否存在點G,使得FG∥平面ACD?若存在,試指出點G的位置;若不存在,請說明理由;
(Ⅲ)求二面角C-AD-B的正弦值.

查看答案和解析>>

同步練習(xí)冊答案