相關習題
 0  227682  227690  227696  227700  227706  227708  227712  227718  227720  227726  227732  227736  227738  227742  227748  227750  227756  227760  227762  227766  227768  227772  227774  227776  227777  227778  227780  227781  227782  227784  227786  227790  227792  227796  227798  227802  227808  227810  227816  227820  227822  227826  227832  227838  227840  227846  227850  227852  227858  227862  227868  227876  266669 

科目: 來源: 題型:解答題

1.2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為$\frac{1}{3}$,賠錢的概率是$\frac{2}{3}$;乙股票賺錢的概率為$\frac{1}{4}$,賠錢的概率為$\frac{3}{4}$.對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:填空題

20.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的右焦點為F,雙曲線${x}^{2}-\frac{{y}^{2}}{3}=1$的一條漸近線與橢圓C交于A,B兩點,且
AF⊥BF,則橢圓C的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,它的四個頂點構成的四邊形的面積為4$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設橢圓C的右焦點為F,過F作兩條互相垂直的直線l1,l2,直線l1與橢圓C交于P,Q兩點,直線l2與直線x=4交于N點.
(1)求證:線段PQ的中點在直線ON上;
(2)求$\frac{|PQ|}{|FN|}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知具有線性相關關系的兩個變量x,y之間的一組數(shù)據(jù)如表:
x01234
y2.24.34.54.86.7
且回歸直線方程為$\widehat{y}$=bx+2.6,根據(jù)模型預報當x=6時,y的預測值為( 。
A.5.76B.6.8C.8.3D.8.46

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0,$\frac{π}{3}$),則cos(2$α+\frac{5π}{6}$)=(  )
A.$±\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x(1-a|x|).
(1)當a>0時,關于x的方程f(x)=a有三個相異實根x1,x2,x3,設x1<x2<x3,求$\frac{{x}_{1}}{{x}_{2}+{x}_{3}}$的取值范圍;
(2)當a≤1時,f(x)在[-1,1]上的最大值為M,最小值為m,若M-m=4,求a的值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知橢圓$\frac{x^2}{a^2}+{y^2}=1$的左、右焦點為F1、F2,點F1關于直線y=-x的對稱點P仍在橢圓上,則△PF1F2的周長為2$\sqrt{2}$+2.

查看答案和解析>>

科目: 來源: 題型:解答題

14.某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知橢圓$\frac{x^2}{9}+{y^2}=1$,過A(0,1)作互相垂直的兩直線AB,AC與橢圓交于B,C兩點.
(Ⅰ)若直線BC經(jīng)過點$(\frac{8}{5},\frac{4}{5})$,求線段BC的長;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的四個頂點構成一個面積為$2\sqrt{3}$的四邊形,該四邊形的一個內(nèi)角為60°.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l與橢圓E相交于A,B兩個不同的點,線段AB的中點為C,O為坐標原點,若△OAB面積為$\frac{{\sqrt{3}}}{2}$,求|AB|•|OC|的最大值.

查看答案和解析>>

同步練習冊答案