相關(guān)習(xí)題
 0  227796  227804  227810  227814  227820  227822  227826  227832  227834  227840  227846  227850  227852  227856  227862  227864  227870  227874  227876  227880  227882  227886  227888  227890  227891  227892  227894  227895  227896  227898  227900  227904  227906  227910  227912  227916  227922  227924  227930  227934  227936  227940  227946  227952  227954  227960  227964  227966  227972  227976  227982  227990  266669 

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)+b(ω>0)的最小正周期為π,最大值為2$\sqrt{2}$.
(1)求實(shí)數(shù)ω,b的值,并寫出相應(yīng)的f(x)的解析式;
(2)是否存在x∈[0,π],滿足f(x)=2$\sqrt{2}$,若存在,求出x的值;若不存在,說明理由;
(3)求函數(shù)F(x)=f(x)-f(x-$\frac{π}{4}$)的最大值、最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知不等式組$\left\{\begin{array}{l}{x+y-4≤0}\\{x-4y+1≤0}\end{array}\right.$所表示的平面區(qū)域?yàn)镸,不等式組$\left\{\begin{array}{l}{2x-3y-3≥0}\\{2x+2y-3≤0}\end{array}\right.$所表示的平面區(qū)域?yàn)镹,若M中存在點(diǎn)在圓C:(x-3)2+(y-1)2=r2(r>0)內(nèi),但N中不存在點(diǎn)在圓C內(nèi).則r的取值范圍是( 。
A.(0,$\frac{\sqrt{13}}{2}$]B.($\frac{\sqrt{13}}{2}$,$\sqrt{17}$)C.(0,$\sqrt{17}$)D.(0,$\frac{5\sqrt{2}}{4}$)

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2+lo{g}_{\frac{1}{4}}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$則f(f($\frac{1}{2}$))=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.cos$\frac{π}{7}$cos$\frac{3π}{7}$cos$\frac{5π}{7}$的值為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{1}{8}$D.-$\frac{1}{8}$

查看答案和解析>>

科目: 來源: 題型:填空題

12.三個(gè)數(shù)cos$\frac{5}{2}$,sin$\frac{1}{10}$,-cos$\frac{11}{6}$的大小系是-cos$\frac{11π}{6}$<cos$\frac{5}{2}$<sin$\frac{1}{10}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知△ABC不是直角三角形,求證:tanA+tanB+tanC=tanAtanBtanC.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)數(shù)列{an}和{bn}分別是等差數(shù)列與等比數(shù)列,且a1=b1=9,a7=b7=1,則以下結(jié)論正確的是(  )
A.a3<a4B.a4>b4C.a4<b4D.b3<b4

查看答案和解析>>

科目: 來源: 題型:解答題

9.求和:Sn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n-1}{{2}^{n}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,A,B是橢圓上不同的兩點(diǎn)且△F1AF2的周長為2($\sqrt{2}$+1)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若A,B關(guān)于直線y=mx+$\frac{1}{2}$對(duì)稱,求△AOB面積取最大值時(shí)m的值(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目: 來源: 題型:解答題

7.求(1-3x)n展開式中的系數(shù)之和及第11項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案