8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,A,B是橢圓上不同的兩點且△F1AF2的周長為2($\sqrt{2}$+1)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若A,B關(guān)于直線y=mx+$\frac{1}{2}$對稱,求△AOB面積取最大值時m的值(O為坐標(biāo)原點)

分析 (1)由橢圓離心率為$\frac{\sqrt{2}}{2}$,△F1AF2的周長為2($\sqrt{2}$+1),列出方程組求出a,b,由此能求出橢圓的標(biāo)準(zhǔn)方程.
(2)由題意知m≠0,設(shè)直線AB的方程為$y=-\frac{1}{m}x+b$,與橢圓聯(lián)立,得($\frac{1}{2}+\frac{1}{{m}^{2}}$)x2-$\frac{2b}{m}x$+b2-2=0,由此利用根的判別式、韋達定理、弦長公式、點到直線距離公式,結(jié)合已知條件能求出m=±$\frac{\sqrt{6}}{3}$時,△AOB面積取最大值$\sqrt{2}$.

解答 解:(1)∵橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,
A,B是橢圓上不同的兩點且△F1AF2的周長為2($\sqrt{2}$+1),
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{2a+2c=2(\sqrt{2}+1)}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,
解得a=2,b=$\sqrt{2}$,c=$\sqrt{2}$,
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(2)由題意知m≠0,設(shè)直線AB的方程為$y=-\frac{1}{m}x+b$,
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\\{y=-\frac{1}{m}x+b}\end{array}\right.$,得($\frac{1}{2}+\frac{1}{{m}^{2}}$)x2-$\frac{2b}{m}x$+b2-2=0,
∵直線y=-$\frac{1}{m}x+b$與橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1有兩個不同的交點,
∴△=$\frac{4^{2}}{{m}^{2}}$-4($\frac{1}{2}+\frac{1}{{m}^{2}}$)(b2-2)=-2b2+4+$\frac{8}{{m}^{2}}$>0,①
設(shè)A(x1,y1),B(x2,y2),則x1+x2=$\frac{4mb}{{m}^{2}+2}$,${x}_{1}{x}_{2}=\frac{2^{2}{m}^{2}-4{m}^{2}}{{m}^{2}+2}$,
y1+y2=-$\frac{1}{m}$(x1+x2)+2b=$\frac{2{m}^{2}b}{{m}^{2}+2}$,
將AB的中點M($\frac{2mb}{{m}^{2}+2}$,$\frac{{m}^{2}b}{{m}^{2}+2}$)代入直線方程y=mx+$\frac{1}{2}$,解得b=-$\frac{{m}^{2}+2}{2{m}^{2}}$,②
由①②解得m<-$\frac{\sqrt{14}}{7}$或m>$\frac{\sqrt{14}}{7}$,
令t=$\frac{1}{m}$∈(-$\frac{\sqrt{14}}{2}$,0)∪(0,$\frac{\sqrt{14}}{2}$),
則|AB|=$\sqrt{{t}^{2}+1}$•$\sqrt{(\frac{4mb}{{m}^{2}+2})^{2}-4×\frac{2^{2}{m}^{2}-4{m}^{2}}{{m}^{2}+2}}$
=$\sqrt{{t}^{2}+1}$•$\frac{\sqrt{-2{t}^{4}+6{t}^{2}+\frac{7}{2}}}{{t}^{2}+\frac{1}{2}}$,
O到直線AB的距離d=$\frac{{t}^{2}+\frac{1}{2}}{\sqrt{{t}^{2}+1}}$,
∴△AOB面積S=$\frac{1}{2}|AB|•d$=$\frac{1}{2}×\sqrt{{t}^{2}+1}×\frac{\sqrt{-2{t}^{4}+6{t}^{2}+\frac{7}{2}}}{{t}^{2}+\frac{1}{2}}×\frac{{t}^{2}+\frac{1}{2}}{\sqrt{{t}^{2}+1}}$=$\frac{1}{2}\sqrt{-2{t}^{4}+6{t}^{2}+\frac{7}{2}}$=$\frac{1}{2}$$\sqrt{-2({t}^{2}-\frac{3}{2})^{2}+8}$≤$\sqrt{2}$.
當(dāng)且僅當(dāng)t2=$\frac{3}{2}$,即m2=$\frac{2}{3}$,m=±$\frac{\sqrt{6}}{3}$時,△AOB面積取最大值$\sqrt{2}$.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程的求法,考查三角形面積取最大值時實數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意根的判別式、韋達定理、弦長公式、點到直線距離公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=|2x-6|.
(Ⅰ)求不等式f(x)≤x的解集;
(Ⅱ)若存在x使不等式f(x)-2|x-1|≤a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某市甲、乙、丙3個區(qū)的高中學(xué)生人數(shù)之比為2:3:5,現(xiàn)要用分層抽樣方法從該市甲、乙、丙3個區(qū)所有高中學(xué)生中抽取一個樣本,已知從甲區(qū)中抽取了80人,則應(yīng)從乙、丙2個區(qū)中共抽。ā 。
A.120人B.200人C.320人D.400人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的公差為1,且a1,a3,a9成等比數(shù)列
(1)求數(shù)列{an}的通項公式an及其前n項和Sn;
(1)若數(shù)列{$\frac{1}{{S}_{n}}$}的前n項和為Tn,證明Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得到如下頻數(shù)分布表.
 質(zhì)量指標(biāo)值分組[75,85)[85,95)[95,105)[105,115)[115,125]
 頻數(shù) 6 26 x 22 8
(1)作出這些數(shù)據(jù)的頻率分布直方圖(用陰影表示);

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)$\overline{x}$及方差s2;
(3)當(dāng)質(zhì)量指標(biāo)值位于(79.6,120.4)時,認(rèn)為該產(chǎn)品為合格品.由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline{x}$,σ2近似為樣本方差s2(每組數(shù)取中間值).
①利用該正態(tài)分布,求從該廠生產(chǎn)的產(chǎn)品中任取一件,該產(chǎn)品為合格品的概率;
②該企業(yè)每年生產(chǎn)這種產(chǎn)品10萬件,生產(chǎn)一件合格品利潤10元,生產(chǎn)一件不合格品虧損20元,則該企業(yè)的年利潤是多少?
(提示:$\sqrt{104}$≈10.2,若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.cos$\frac{π}{7}$cos$\frac{3π}{7}$cos$\frac{5π}{7}$的值為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{1}{8}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\frac{x}{x+1}$+$\frac{x+1}{x+2}$+$\frac{x+2}{x+3}$的對稱中心為(-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果實數(shù)x,y,滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=1-$\frac{2}{2x+3y}$的最大值為(  )
A.1B.$\frac{3}{4}$C.0D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市四所重點中學(xué)進行高二期中聯(lián)考,共有5000名學(xué)生參加,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機的抽取若干名學(xué)生在這次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
分組頻數(shù)頻率
[80,90)
[90,100)0.050
[100,110)0.200
[110,120)360.300
[120,130)0.275
[130,140)12
[140,150]0.050
合計
(1)根據(jù)上面的頻率分布表,推出①,②,③,④處的數(shù)字分別為,3,0.025,0.1,1;
(2)在所給的坐標(biāo)系中畫出[80,150]上的頻率分布直方圖;
(3)根據(jù)題中的信息估計總體:
①120分及以上的學(xué)生人數(shù);
②成績在[126,150]中的概率.

查看答案和解析>>

同步練習(xí)冊答案