相關習題
 0  229309  229317  229323  229327  229333  229335  229339  229345  229347  229353  229359  229363  229365  229369  229375  229377  229383  229387  229389  229393  229395  229399  229401  229403  229404  229405  229407  229408  229409  229411  229413  229417  229419  229423  229425  229429  229435  229437  229443  229447  229449  229453  229459  229465  229467  229473  229477  229479  229485  229489  229495  229503  266669 

科目: 來源: 題型:解答題

7.已知△ABC的兩個頂點A、B的坐標分別為A(0,0),B(6,0),頂點C在曲線y=x2+3上運動,求△ABC重心的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:解答題

6.A為定點,線段BC在定直線l上滑動,已知|BC|=4,A到l的距離為3,求△ABC的外心的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在列聯(lián)表中,哪兩個比值相差越大,兩個分類變量之間的關系越強( 。
A.$\frac{a}{a+b}$與$\frac{c}{c+d}$B.$\frac{a}{c+d}$與$\frac{c}{a+b}$C.$\frac{a}{a+d}$與$\frac{c}{b+c}$D.$\frac{a}{b+d}$與$\frac{c}{a+c}$

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知點P是圓C:(x-3)2+y2=4上的動點,點A(-1,0),M是線段AP的中點,則M點的軌跡方程是(x-1)2+y2=1.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數f(x)=ln(x+1)+ax2-x(a>0).
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)討論函數y=f(x)的單調性;
(3)若存在x0∈[0,+∞),使f(x0)<0成立,求實數a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數f(x)=ekx-2x(k∈R,k≠0).
(1)若對任意的x∈R,都有f(x)≥1,求k的值;
(2)對于函數f(x)的單調遞增區(qū)間內的任意實數x1,x2,x3(x1<x2<x3),證明:$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′(x2)<$\frac{f({x}_{3})-f({x}_{2})}{{x}_{3}-{x}_{2}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知A(-2,0),B(2,0),動點M滿足∠AMB=2θ,|$\overrightarrow{AM}$|•|$\overrightarrow{BM}$|=$\frac{4}{co{s}^{2}θ}$.
(1)求|$\overrightarrow{AM}$|+|$\overrightarrow{BM}$|的值,并寫出M的軌跡曲線C的方程;
(2)動直線l:y=kx+m與曲線C交于P、Q兩點,且OP⊥OQ,是否存在圓x2+y2=r2使得l恰好是該圓的切線,若存在,求出r;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

20.設△ABC的內角A,B,C所對的邊長分別為a,b,c,且S△ABC=3,0≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,函數f(θ)=2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ.
(1)求角A的取值范圍;
(2)求f(A)的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知數列{an}滿足a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*),若不等式$\frac{4}{{n}^{2}}$+$\frac{1}{n}$+t•an≥0恒成立,則實數t的取值范圍是[-9,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知$\overrightarrow{a}$=(cos$\frac{π}{6}$,sin$\frac{π}{6}$),$\overrightarrow$=(cos$\frac{5π}{6}$,sin$\frac{5π}{6}$),則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案