相關(guān)習題
 0  229736  229744  229750  229754  229760  229762  229766  229772  229774  229780  229786  229790  229792  229796  229802  229804  229810  229814  229816  229820  229822  229826  229828  229830  229831  229832  229834  229835  229836  229838  229840  229844  229846  229850  229852  229856  229862  229864  229870  229874  229876  229880  229886  229892  229894  229900  229904  229906  229912  229916  229922  229930  266669 

科目: 來源: 題型:解答題

10.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的四個頂點恰好是一邊長為2,一內(nèi)角為60°的菱形的四個頂點.
(1)求橢圓M的方程;
(2)直線l與橢圓M交于A,B兩點,且線段AB的垂直平分線經(jīng)過點(0,$\frac{1}{2}$),求△AOB(O為坐標原點)面積的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

9.若橢圓的中點在原點,一個焦點為(0,2),直線y=3x+7與橢圓相交所得弦的中點的縱坐標為1,則這個橢圓的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=x+1-alnx (a∈R)
(1)討論f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x=2處取到極值,對?x∈(0,+∞),f(x)≥bx-2恒成立,求實數(shù)b范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在平面直角坐標系xOy中,已知橢圓C的中心在原點O,兩焦點F1、F2在x軸上,上頂點B與F1、F2圍成一個正三角,且橢圓C經(jīng)過點(1,$\frac{3}{2}$).
(1)求橢圓C的離心率e和標準方程;
(2)過右焦點F2的直線l將△BF1F2平分成面積相等的兩部分,求直線l被橢圓C截得的弦長.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.函數(shù)f(x)=ex-x(e為自然對數(shù)的底數(shù))在區(qū)間[0,1]上的最大值是( 。
A.1+$\frac{1}{e}$B.1C.e+1D.e-1

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=x+$\frac{a+1}{x}$-alnx(a∈R)
(1)當a=1時,求函數(shù)f(x)的圖象在x=1處的切線方程
(2)若在[1,e](e=2.7182…為自然對數(shù)的底數(shù))上存在一點x0,使得f(x0)≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1+ln(x+1)}{x}$.
(Ⅰ)求函數(shù)f(x)的圖象在點x=1處的切線的斜率;
(Ⅱ)若當x>0時,f(x)>$\frac{k}{x+1}$恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項的和為Sn,點(n,Sn)在函數(shù)f(x)=2x2的圖象上,數(shù)列{bn}滿足:b1=a1,bn+1(an+1-an)=bn.其中n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)${c_n}=\frac{a_n}{b_n}$,求證:數(shù)列{cn}的前n項的和${T_n}>\frac{5}{9}$(n∈N*).

查看答案和解析>>

科目: 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{2}{x^2}$-(a+1)x+1+lnx(a>0),若存在唯一一個整數(shù)x0使f(x0)<0成立,則a的范圍是(  )
A.(0,1)B.(0,1]C.(0,2+2ln2)D.($\frac{1}{2}$,$\frac{1}{2}$+$\frac{1}{2}$ln2)

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a是常數(shù).
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿足p(x)<q(x),那么就稱q(x)為p(x)在D上的“線上函數(shù)”.證明:當a<1時,g(x)為f(x)在(0,+∞)上的“線上函數(shù)”.

查看答案和解析>>

同步練習冊答案