相關(guān)習(xí)題
 0  229843  229851  229857  229861  229867  229869  229873  229879  229881  229887  229893  229897  229899  229903  229909  229911  229917  229921  229923  229927  229929  229933  229935  229937  229938  229939  229941  229942  229943  229945  229947  229951  229953  229957  229959  229963  229969  229971  229977  229981  229983  229987  229993  229999  230001  230007  230011  230013  230019  230023  230029  230037  266669 

科目: 來源: 題型:解答題

2.已知圓C:x2-4x+y2=0,過點P(-1,0)作直線l與圓C相交于M,N兩點.
(I)當(dāng)直線l的傾斜角為30°時,求|MN|的長;
(Ⅱ)設(shè)直線l的斜率為k,當(dāng)∠MCN為鈍角時,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為$\sqrt{3}$,此時四面體ABCD的外接球的表面積為7π.

查看答案和解析>>

科目: 來源: 題型:解答題

20.某鞋店隨機抽取了一年內(nèi)100天的日銷售量(單位:雙),結(jié)果統(tǒng)計如表:
日銷售量[0,100][100,200][200,300][300,400]
日銷售量等級優(yōu)秀
天數(shù)20452015
(1)若本次抽取的樣本數(shù)據(jù)有30天是夏季,其中有8天為銷售量等級優(yōu)秀,根據(jù)提供的統(tǒng)計數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%有把握認為“該鞋店日銷售等級為優(yōu)秀與季節(jié)有關(guān)”?
非優(yōu)秀優(yōu)秀總計
夏季
非夏季
總計100
(2)已知該鞋店每人固定成本為680元,每雙鞋銷售利潤為6元,試估計該鞋店一年(365天)的平均利潤.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.10.050.0250.010.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目: 來源: 題型:填空題

19.設(shè)m∈R,直線x+my=0與直線mx-y-2m+4=0交于點P(x,y),則點P到直線l:(x-1)cosθ+(y-2)sinθ=3距離的最大值為3+$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.(理科)已知正方體ABCD-A1B1C1D1中,P為直線BC1上的動點,Q為直線A1B1上的動點,則PQ與面BCC1B1所成角中最大角的正弦值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

17.某學(xué)校為了對教師教學(xué)水平和教師管理水平進行評價,從該校學(xué)生中選出300人進行統(tǒng)計.其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的60%,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的75%,其中對教師教學(xué)水平和教師管理水平都給出好評的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評價的2×2列聯(lián)表:
對教師管理水平好評對教師管理水平不滿意合計
對教師教學(xué)水平好評
對教師教學(xué)水平不滿意
合計
問:是否可以在犯錯誤概率不超過0.1%的前提下,認為教師教學(xué)水平好評與教師管理水平好評有關(guān)、
(2)若將頻率視為概率,有4人參與了此次評價,設(shè)對教師教學(xué)水平和教師管理水平全好評的人數(shù)為隨機變量X;
①求對教師教學(xué)水平和教師管理水平全好評的人數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:填空題

16.在三棱錐S-ABC中,△ABC是邊長為4$\sqrt{3}$的等邊三角形,SA=SC=2$\sqrt{7}$,平面SAC⊥平面ABC,則該三棱錐外接球的表面積為65π.

查看答案和解析>>

科目: 來源: 題型:解答題

15.(1)求在區(qū)間[-3,3]上隨機取一個數(shù)x,使得|x+1|-|x-2|≥1成立的概率.
(2)設(shè)函數(shù)f(x)=|x+$\frac{1}{a}$|+|x-a|,(a>0),若f(3)<5,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

14.下列命題中真命題的是(1)(2)(3)(4)  (寫出所有真命題的序號)
(1)命題“若x=3,則x2-7x+12=0”及其逆命題,否命題,逆否命題中正確的有2個.
(2)已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為12.
(3)回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法.
(4)已知△ABC中,角A,B,C的對邊分別為a,b,c,則$\frac{c+1}{a+b+c+1}$<$\frac{a+b+1}{2(a+b)+1}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在直三棱柱ABC-A1B1C1中,M為AB1的中點,△CMB1為等邊三角形.
(1)證明:AC⊥BC1;
(2)若BC=2,AB1=8,求C1M與平面ACB1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案