相關(guān)習(xí)題
 0  230378  230386  230392  230396  230402  230404  230408  230414  230416  230422  230428  230432  230434  230438  230444  230446  230452  230456  230458  230462  230464  230468  230470  230472  230473  230474  230476  230477  230478  230480  230482  230486  230488  230492  230494  230498  230504  230506  230512  230516  230518  230522  230528  230534  230536  230542  230546  230548  230554  230558  230564  230572  266669 

科目: 來源: 題型:選擇題

14.若函數(shù)f(x)對任意的x∈R都有f′(x)>f(x)恒成立,則( 。
A.3f(ln2)>2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)D.3f(ln2)與2f(ln3)的大小不確定

查看答案和解析>>

科目: 來源: 題型:選擇題

13.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)=sinx,則下列等式正確的是(  )
A.f($\frac{π}{3}$)=f′($\frac{2π}{3}$)B.f($\frac{2π}{3}$)=f′($\frac{π}{3}$)C.f($\frac{π}{4}$)=f′($\frac{3π}{4}$)D.f($\frac{3π}{4}$)=f′($\frac{π}{4}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知命題p:?x∈R,x2+x+1≤0,則( 。
A.p是真命題,¬p:?x0∈R,使得x02+x0+1>0
B.p是真命題,¬p:?x∈R,使得x2+x+1>0
C.p是假命題,¬p:?x0∈R,使得x02+x0+1>0
D.p是假命題,¬p:?x∈R,使得x2+x+1>0

查看答案和解析>>

科目: 來源: 題型:選擇題

11.用反證法證明命題:“若a,b,c為不全相等的實(shí)數(shù),且a+b+c=0,則a,b,c至少有一個負(fù)數(shù)”,假設(shè)原命題不成立的內(nèi)容是( 。
A.a,b,c都大于0B.a,b,c都是非負(fù)數(shù)
C.a,b,c至多兩個負(fù)數(shù)D.a,b,c至多一個負(fù)數(shù)

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知a,b∈R,i是虛數(shù)單位,若3+bi與a-i互為共軛復(fù)數(shù),則|a+bi|等于( 。
A.$\sqrt{2}$B.5C.$\sqrt{10}$D.10

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}(x<0)}\\{(2-a)x+\frac{2a}{3}(x≥0)}\end{array}\right.$滿足對任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則a的取值范圍是[$\frac{3}{2}$,2).(用區(qū)間表示)

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知復(fù)數(shù)z=2+bi(i為虛數(shù)單位),b為正實(shí)數(shù),且z2為純虛數(shù).
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)ω=$\frac{z}{1-i}$,求ω的模.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知f(x)是定義在R上的奇函數(shù),滿足f(x+4)=f(x)+f(2),且對任意的x1,x2∈[0,2],都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立.現(xiàn)給出下列命題:①f(2)=0;②函數(shù)f(x)的圖象關(guān)于點(diǎn)(2,0)成對稱中心;③函數(shù)f(x)在(-4,0)上單調(diào)遞減;④函數(shù)f(x)在(-6,6)上有3個零點(diǎn).
其中正確命題的序號是①②③(寫出所有正確命題的序號).

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2lnx,x>0}\\{{e}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{e}$))=$\frac{1}{{e}^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案