相關(guān)習(xí)題
 0  230433  230441  230447  230451  230457  230459  230463  230469  230471  230477  230483  230487  230489  230493  230499  230501  230507  230511  230513  230517  230519  230523  230525  230527  230528  230529  230531  230532  230533  230535  230537  230541  230543  230547  230549  230553  230559  230561  230567  230571  230573  230577  230583  230589  230591  230597  230601  230603  230609  230613  230619  230627  266669 

科目: 來源: 題型:選擇題

4.已知命題p:?α∈R,使得sinα+2cosα=3;命題q:?x∈(0,$\frac{π}{2}$),x>sinx,則下列判斷正確的是( 。
A.p為真B.¬q為假C.p∧q為真D.p∨q為假

查看答案和解析>>

科目: 來源: 題型:選擇題

3.復(fù)數(shù)z=$\frac{5-i}{1+2i}$的虛部為( 。
A.$\frac{11}{5}$B.$\frac{11}{5}$iC.-$\frac{11}{5}$D.-$\frac{11}{5}$i

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知集合A={x|-x2-x+6>0,x∈Z},B={1,2,3},則A∩B=( 。
A.{-2,-1,0,1}B.{1,2,3}C.{0,1}D.{1}

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知x=1是函數(shù)f(x)=xa+b的一個(gè)零點(diǎn).
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線的斜率為2,求f(x)的解析式;
(2)設(shè)g(x)=f(x)+ln(1+e-2x),且g(x)是偶函數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知5a=2,則log580-3log210=( 。
A.a4-3a-2B.a4-$\frac{3}{a}$-2C.a-2D.4a-$\frac{3}{a}$-2

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{lnx}{x}$-aex
(1)當(dāng)a=$\frac{1}{e}$時(shí),求f(x)的最大值;
(2)若f(x)在[e,+∞)上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且經(jīng)過點(diǎn)D(2$\sqrt{2}$,2$\sqrt{2}$).
(1)求C的方程;
(2)若P(x0,y0)是第一象限C上異于點(diǎn)D的動(dòng)點(diǎn),過原點(diǎn)向圓(x-x02+(y-y02=8作切線交C于G,H兩點(diǎn),設(shè)直線OG,OH的斜率分別為kOG,kOH,證明:2kOGkOH+1=0.

查看答案和解析>>

科目: 來源: 題型:解答題

17.某機(jī)構(gòu)為了解某地區(qū)居民收入情況,隨機(jī)抽取了100,名居民進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的居民月收入的頻率分布直方圖如圖所示,已知[3500,4500),[4500,5500),[5500,6500)月收入段的居民人數(shù)成等差數(shù)列.
(1)求直方圖中a,b的值,并估計(jì)這100名居民月收入的平均數(shù)$\overline x$(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若月收入不低于6500元的稱“高收入群體”,在月收入[5500,6500)段和[6500,7500)段按比例抽取5人,再從5人中隨機(jī)選取3人了解其所從事的職業(yè),求3人中至少有一人屬于“高收入人群體”的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sinA=acosC,c=$\sqrt{3}$.
(1)求角C;
(2)求acosB的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知長方體的寬與高相等,其外接球的半徑為2,則長方體體積的最大值為$\frac{{64\sqrt{3}}}{9}$.

查看答案和解析>>

同步練習(xí)冊答案