相關(guān)習(xí)題
 0  231119  231127  231133  231137  231143  231145  231149  231155  231157  231163  231169  231173  231175  231179  231185  231187  231193  231197  231199  231203  231205  231209  231211  231213  231214  231215  231217  231218  231219  231221  231223  231227  231229  231233  231235  231239  231245  231247  231253  231257  231259  231263  231269  231275  231277  231283  231287  231289  231295  231299  231305  231313  266669 

科目: 來源: 題型:解答題

4.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到如圖2所示的幾何體D-ABC
(Ⅰ)求證:AD⊥平面BCD;
(Ⅱ)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

2.設(shè)直線l:(m-1)x+(2m+1)y+3m=0(m∈R)與圓(x-1)2+y2=r2(r>0)交于A,B兩點(diǎn),C為圓心,當(dāng)實(shí)數(shù)m變化時(shí),△ABC面積的最大值為4,則mr2=-4或-14.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)f(x)是R上的連續(xù)可導(dǎo)函數(shù),當(dāng)x≠0時(shí),$f'(x)+\frac{f(x)}{x}>0$,則函數(shù)$g(x)=\frac{1}{x}+f(x)$的零點(diǎn)個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:填空題

20.如圖,平面ABC⊥平面α,D為線段AB的中點(diǎn),$|{AB}|=2\sqrt{2}$,∠CDB=45°,點(diǎn)P為面α內(nèi)的動點(diǎn),且P到直線CD的距離為$\sqrt{2}$,則∠APB的最大值為90°

查看答案和解析>>

科目: 來源: 題型:選擇題

19.如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為$\frac{1}{n}$(n≥2),并且相鄰兩行數(shù)之間有一定的關(guān)系,則第7行第4個數(shù)(從左往右數(shù))為(  )
A.$\frac{1}{140}$B.$\frac{1}{105}$C.$\frac{1}{60}$D.$\frac{1}{42}$

查看答案和解析>>

科目: 來源: 題型:解答題

18.隨著智能手機(jī)的發(fā)展,微信越來越成為人們交流的一種方式,某機(jī)構(gòu)對使用微信交流的態(tài)度進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)51012721
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,關(guān)判斷是否有99%的把握認(rèn)為年齡45歲為分界點(diǎn)對使用微信交流的態(tài)度有差異;
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
贊成102737
不贊成10313
合計(jì)203050
(Ⅱ)若對年齡在[55,65)的被調(diào)查人中隨機(jī)抽取兩人進(jìn)行追蹤調(diào)查,求至少有1人贊成使用微信交流的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目: 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù),0≤φ≤π),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=5+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1的普通方程并指出它的軌跡;
(Ⅱ)以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線OM:θ=$\frac{π}{4}$與半圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函f(x)=x2-x+1+alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1,x2,且x1<x2,求證f(x2)<$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.一個棱長為5的正四面體(棱長都相等的三棱錐)紙盒內(nèi)放一個小正四面體,若小正四面體在紙盒內(nèi)可以任意轉(zhuǎn)動,則小正四面體的棱長的最大值為$\frac{5}{3}$.

查看答案和解析>>

同步練習(xí)冊答案