相關(guān)習(xí)題
 0  231151  231159  231165  231169  231175  231177  231181  231187  231189  231195  231201  231205  231207  231211  231217  231219  231225  231229  231231  231235  231237  231241  231243  231245  231246  231247  231249  231250  231251  231253  231255  231259  231261  231265  231267  231271  231277  231279  231285  231289  231291  231295  231301  231307  231309  231315  231319  231321  231327  231331  231337  231345  266669 

科目: 來源: 題型:選擇題

9.在長方體ABCD-A1B1C1D1中,∠BAB1=30°,AA1=1,則點(diǎn)A到平面BCC1B1的距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 來源: 題型:填空題

8.四面體ABCD中,AB、AC、AD兩兩垂直,且AB=1,AC=2,AD=4,則點(diǎn)A到平面BCD的距離是$\frac{4\sqrt{21}}{21}$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.在極坐標(biāo)系中,圓C:ρ=2與曲線ρ=$\frac{a}{1-acosθ}$(a>0)交于A,B兩點(diǎn),當(dāng)|AB|取最大值時(shí),a=2.

查看答案和解析>>

科目: 來源: 題型:解答題

6.設(shè)點(diǎn)A的極坐標(biāo)為(ρ1,θ1)(ρ1≠0,0<θ1<$\frac{π}{2}$),直線l經(jīng)過A點(diǎn),且傾斜角為α.
(1)證明:l的極坐標(biāo)方程是ρsin(θ-α)=ρ1sin(θ1-α);
(2)若O點(diǎn)到l的最短距離d=ρ1,求θ1與α間的關(guān)系.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,△ABC中,∠ABC=90°,∠C=30°,AB=1,D為AC中點(diǎn),AE⊥BD于點(diǎn)E,延長AE交BC于點(diǎn)F,沿BD將△ABC折成四面體A-BCD.
(Ⅰ)若M是FC的中點(diǎn),求證:DM∥平面AEF;
(Ⅱ)若cos∠AEF=$\frac{1}{3}$,求點(diǎn)D到平面ABC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

4.在極坐標(biāo)系中,求曲線cos2θ-ρcosθ+1=0上一點(diǎn)到極點(diǎn)距離的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在極坐標(biāo)系中,求曲線ρ=2-sinθ-cosθ上一點(diǎn)到極點(diǎn)距離的范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2=$\frac{6}{1+si{n}^{2}θ}$.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線l:ρsinθ-ρcosθ+1=0與曲線C交于不同的兩點(diǎn)M,N,求|MN|.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知曲線C的極坐標(biāo)方程是$\frac{2}{{ρ}^{2}}$=1+sin2θ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與x軸的交點(diǎn)是P,直線l與曲線C交于M,N兩點(diǎn),求$\frac{1}{|PM|}$+$\frac{1}{|PN|}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,在平行四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,BC=$\sqrt{3}$AB,對(duì)角線AC=2.
(1)求對(duì)角線BD的長;
(2)求點(diǎn)A到BD的長.
(參考數(shù)據(jù):$\sqrt{2+\sqrt{3}}$=$\frac{\sqrt{2}+\sqrt{6}}{2}$)

查看答案和解析>>

同步練習(xí)冊答案