相關(guān)習(xí)題
 0  231164  231172  231178  231182  231188  231190  231194  231200  231202  231208  231214  231218  231220  231224  231230  231232  231238  231242  231244  231248  231250  231254  231256  231258  231259  231260  231262  231263  231264  231266  231268  231272  231274  231278  231280  231284  231290  231292  231298  231302  231304  231308  231314  231320  231322  231328  231332  231334  231340  231344  231350  231358  266669 

科目: 來源: 題型:解答題

9.廈門日報訊,2016年5月1日上午,廈門海洋綜合行政執(zhí)法支隊在公務(wù)碼頭啟動了2016年休漁監(jiān)管執(zhí)法的首日行動,這標志著廈門海域正式步入為期4個半月的休漁期.某小微企業(yè)決定囤積一些冰鮮產(chǎn)品,銷售所囤積魚品的凈利潤y萬元與投入x萬元之間近似滿足函數(shù)關(guān)系:
f(x)=$\left\{\begin{array}{l}{2{x}^{2}-(2ln2)•x,0<x<2}\\{alnx-\frac{1}{4}{x}^{2}+\frac{9}{2}x,2≤x≤15}\end{array}\right.$
若投入2萬元,可得到凈利潤為5.2萬元.
(1)試求該小微企業(yè)投入多少萬元時,獲得的凈利潤最大;
(2)請判斷該小微企業(yè)是否會虧本,若虧本,求出投入資金的范圍;若不虧本,請說明理由(參考數(shù)據(jù):ln2=0.7,ln15=2.7)

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=x-(a-1)lnx+$\frac{a}{x}$(a∈R).
(1)討論f(x)的單調(diào)性;
(2)若f(x)在[1,e]上存在點x0,使得f(x0)≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.垂直于直線2x+y-1=0且平分圓:x2+y2+x-2y=0周長的直線l的方程為(  )
A.x-2y+3=0B.2x-y+3=0C.2x-4y+5=0D.2x+y=0

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax-x2(a∈R).
(1)若f(x)≤0恒成立,求實數(shù)a的取值范圍;
(2)證明ln(n+1)<$\frac{2}{{1}^{2}}$+$\frac{3}{{2}^{2}}$+…+$\frac{n+1}{{n}^{2}}$(n為正整數(shù)).

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知直線l:4x+3y-5=0與圓C:x2+y2-4=0交于A、B兩點,O為坐標原點,則 $\overrightarrow{OA}$•$\overrightarrow{OB}$=( 。
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2D.-2

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知直線x+y+1=0與圓C:x2+y2+x-2ay+a=0交于A,B兩點.
(1)若a=3,求AB的長;
(2)是否存在實數(shù)a使得以AB為直徑的圓過原點,若存在,求出實數(shù)a的值;若不存在,請說明理由;
(3)若對于任意的實數(shù)a≠$\frac{1}{2}$,圓C與直線l始終相切,求出直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.不等式|x-2|+|x+3|>a恒成立,則參數(shù)a的范圍是(  )
A.a≤5B.a<5C.a≤1D.a<1

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如圖,在四棱錐P-ABCD中,側(cè)面PAD為正三角形,底面ABCD是邊長為2的為正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個動點,且滿足MP=MC,則點M在正方形ABCD內(nèi)的軌跡的長度為(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.πD.$\frac{2π}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知點A(-2,-2),B(-2,6),C(4,-2),點P在圓x2+y2=4上運動,則|PA|2+|PB|2+|PC|2的最大值為88.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知圓O:x2+y2=4上到直線l:x+y=m的距離為1的點有且僅有2個,則m的取值范圍是( 。
A.$({-∞,}\right.-\sqrt{2})∪(\sqrt{2},+∞)$B.(-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$)C.$(-3\sqrt{2},3\sqrt{2})$D.$(-\sqrt{2},\sqrt{2})$

查看答案和解析>>

同步練習(xí)冊答案