20.已知圓O:x2+y2=4上到直線l:x+y=m的距離為1的點有且僅有2個,則m的取值范圍是( 。
A.$({-∞,}\right.-\sqrt{2})∪(\sqrt{2},+∞)$B.(-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$)C.$(-3\sqrt{2},3\sqrt{2})$D.$(-\sqrt{2},\sqrt{2})$

分析 由題意得圓心(0,0)到直線l:x+y+m=0的距離d滿足1<d<3,根據(jù)點到直線的距離公式求出d,再解絕對值不等式求得實數(shù)m的取值范圍.

解答 解:根據(jù)題意,圓O:x2+y2=4上到直線l:x+y=m的距離為1的點有且僅有2個,
則圓心(0,0)到直線l:x+y+m=0的距離d滿足
1<d<3,
由于d=$\frac{|m|}{\sqrt{2}}$,
所以1<$\frac{|m|}{\sqrt{2}}$<3,
即$\sqrt{2}$<|m|<3$\sqrt{2}$,
解得m∈(-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$).
故選:B.

點評 本題主要考查了直線和圓的位置關(guān)系,點到直線的距離公式,絕對值不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖.在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,點M,N分別為BC,PA的中點,且AB=AC=1.
(I)證明:MN∥平面PCD;
(Ⅱ)設(shè)直線PC與平面ABCD所成角為$\frac{π}{3}$,求二面角C-PB一A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABA1中,D1C=$\sqrt{2}$a,DD1=DA=DC=a,點E、F分別是BC、DC的中點.
(1)證明:AF⊥ED1;
(2)求點E到平面AFD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知△ABC中,B=90°,∠C的平分線交AB于D,以AD為直徑的圓O交AC于點E、交CD于點F.
(1)求證:AE•AC=AD•AB;
(2)若BD=1,BC=$\sqrt{3}$,求點F到線段AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a∈R,函數(shù)f(x)=ex+ax2,g(x)是f(x)的導(dǎo)函數(shù),
(Ⅰ)當(dāng)a>0時,求證:存在唯一的x0∈(-$\frac{1}{2a}$,0),使得g(x0)=0;
(Ⅱ)若存在實數(shù)a,b,使得f(x)≥b恒成立,求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線l:4x+3y-5=0與圓C:x2+y2-4=0交于A、B兩點,O為坐標(biāo)原點,則 $\overrightarrow{OA}$•$\overrightarrow{OB}$=( 。
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果對任意的x∈[m,n],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是“接近“的,否則稱f(x)與g(x)在[m,n]上是“非接近”的.現(xiàn)有f(x)=loga(x+2),g(x)=loga$\frac{1}{x+1}$(其中a>1),試討論f(x)與g(x)在給區(qū)間[0,1]上是否是接近?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.把y=sin(2x+$\frac{π}{4}$)的圖象上所有的點向右平移$\frac{π}{8}$個單位,再把橫坐標(biāo)擴大到原來的2倍,則所得的圖象的解析式為y=sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,已知二面角α-l-β的大小為60°,點A∈α,點B是點A在平面β內(nèi)的射影,且AB=2,則點B到平面α的距離為1.

查看答案和解析>>

同步練習(xí)冊答案