相關(guān)習(xí)題
 0  231388  231396  231402  231406  231412  231414  231418  231424  231426  231432  231438  231442  231444  231448  231454  231456  231462  231466  231468  231472  231474  231478  231480  231482  231483  231484  231486  231487  231488  231490  231492  231496  231498  231502  231504  231508  231514  231516  231522  231526  231528  231532  231538  231544  231546  231552  231556  231558  231564  231568  231574  231582  266669 

科目: 來源: 題型:解答題

3.已知圓C:x2+y2-8x-4y+4=0及直線l:(2m+1)x+(m-1)y=7m-1(m∈R).
(1)證明:不論m取什么實數(shù),直線l與圓C一定相交;
(2)求直線l與圓C所截得的弦長的最短長度及此時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖所示,圓O的圓心為坐標原點,B為圓O上一點,若點A坐標為(3,0),|AB|=4,sin∠AOB=$\frac{\sqrt{15}}{4}$.
求:(1)△AOB的面積;
(2)AB所在的直線方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知點A($\sqrt{2}$,0)與圓O:x2+y2=1上B,C兩點共線,當△OBC的面積最大時,O到AB的距離為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.過點A(3,2)作圓x2+y2+2x-4y-20=0的弦,其中弦長為整數(shù)的共有(  )
A.6條B.7條C.8條D.9條

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知圓O:x2+y2=4和點$M({1,\sqrt{2}})$,AB為過點M的弦.
(Ⅰ)若$|AB|=2\sqrt{3}$,求直線AB的方程;
(Ⅱ)求弦AB的中點的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知橢圓C的中心在原點,焦點在x軸上,離心率為$\frac{\sqrt{2}}{2}$,過橢圓C上一點P(2,1)作x軸的垂線,垂足為Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q的直線l交橢圓C于點A,B,且3$\overrightarrow{QA}$+$\overrightarrow{QB}$=$\overrightarrow{0}$,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)函數(shù)fn(x)=-xn+3ax(a∈R,n∈N+),若對任意的x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,則a的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$]B.[$\frac{1}{6}$,$\frac{1}{4}$]C.[$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$]D.[$\frac{1}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目: 來源: 題型:填空題

16.定點M(1,1),動A、B點在圓C:x2+y2=4上運動且MB垂直MA,則弦AB長度最小值為$\sqrt{6}$-$\sqrt{2}$..

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知圓M:(x-$\sqrt{3}$)2+y2=16,N(-$\sqrt{3}$,0),點P在圓M上,點Q在MP上,且點C滿足$\overrightarrow{NC}$=$\frac{1}{2}$$\overrightarrow{NP}$,$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0
(1)求動點Q的軌跡E的方程;
(2)過x軸上一點D作圓O:x2+y2=1的切線l交軌跡E于A,B兩點,求△AOB的面積的最大值和相應(yīng)的點D的坐標.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx,g(x)=x2
(1)求函數(shù)h(x)=f(x)-x+1的最大值;
(2)對于任意x1,x2∈(0,+∞),且x2<x1,是否存在實數(shù)m,使mg(x2)-mg(x1)-x1f(x1)+x2f(x2)恒為正數(shù)?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案