相關(guān)習(xí)題
 0  231602  231610  231616  231620  231626  231628  231632  231638  231640  231646  231652  231656  231658  231662  231668  231670  231676  231680  231682  231686  231688  231692  231694  231696  231697  231698  231700  231701  231702  231704  231706  231710  231712  231716  231718  231722  231728  231730  231736  231740  231742  231746  231752  231758  231760  231766  231770  231772  231778  231782  231788  231796  266669 

科目: 來源: 題型:填空題

16.若函數(shù)f(x)=2x2-lnx在其定義域的一個子區(qū)間(m,m+1)內(nèi)有極值,則實數(shù)m的取值范圍是$0≤m<\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.函數(shù)f(x)=x3-12x的極小值點是( 。
A.2B.-2C.-16D.16

查看答案和解析>>

科目: 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{{\root{3}{x^2}}}{e^x}$在x∈[-2,2]上的極值點的位置有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知f(x)=ax-lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間和極值;
(2)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
(3)證明:(1-$\frac{1}{2}$)•($\frac{1}{2}-$$\frac{1}{3}$)•($\frac{1}{3}$-$\frac{1}{4}$)…($\frac{1}{n}$-$\frac{1}{n+1}$)<e3(3-n)

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知a是實常數(shù),函數(shù)f(x)=xlnx+ax2
(1)若曲線y=f(x)在x=1處的切線過點A(0,-2),求實數(shù)a的值;
(2)若f(x)有兩個極值點x1,x2(x1<x2
①求證:-$\frac{1}{2}$<a<0;
②求證:f(x2)>f(x1)且x1∈(0,1).

查看答案和解析>>

科目: 來源: 題型:填空題

11.函數(shù)f(x)=x(1-x)n在x=$\frac{1}{3}$處取的極值,則n=2.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=(ax-2)ex在x=1處取得極值.
(1)求a的值;
(2)求證:對任意x1、x2∈[0,2],都有|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+bx為奇函數(shù),且在x=4處取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)在[-5,6]上的值域.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+1)-$\frac{x}{x+1}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)的極值;
(3)求證:對任意的正數(shù)a與b,恒有l(wèi)na-lnb≥1-$\frac{a}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx+c的圖象經(jīng)過原點,且在x=1處取得極值,
(1)若y=f(x)在原點處的切線的斜率為-3,求f(x)的解析式和極值;
(2)若f(x)在x=1處取得的是極小值,問是否存在實數(shù)m,n,t∈[1,$\frac{3}{2}$]使得f(m)+f(n)<f(t)成立,若存在,求實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案