相關(guān)習(xí)題
 0  231703  231711  231717  231721  231727  231729  231733  231739  231741  231747  231753  231757  231759  231763  231769  231771  231777  231781  231783  231787  231789  231793  231795  231797  231798  231799  231801  231802  231803  231805  231807  231811  231813  231817  231819  231823  231829  231831  231837  231841  231843  231847  231853  231859  231861  231867  231871  231873  231879  231883  231889  231897  266669 

科目: 來源: 題型:選擇題

2.若集合A={x|-1≤x≤3},B={x|x>2},則A∩B=( 。
A.{x|2<x≤3}B.{x|x≥-1}C.{x|2≤x<3}D.{x|x>2}

查看答案和解析>>

科目: 來源: 題型:填空題

1.直線l1:ax+2y-1=0與直線l2:x+(a+1)y-1=0平行,則a=-2.

查看答案和解析>>

科目: 來源: 題型:解答題

20.把函數(shù)f(x)=3x2+2(a-1)x+a2,x∈[-1,1]的最小值記為g(a).
(1)寫出g(a)的解析式;
(2)若f(x)的最小值為13,求a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.若二項(xiàng)式(3x-$\frac{1}{\root{3}{x}}$)n的展開式中各項(xiàng)系數(shù)之和為256.
(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開式中的常數(shù)項(xiàng).

查看答案和解析>>

科目: 來源: 題型:填空題

18.若曲線f(x)=ln(x3+2x)在x=1處的切線與直線ax+y+1=0互相垂直,則實(shí)數(shù)a=$\frac{3}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.由曲線y2=2x和直線y=x-4所圍成的圖形的面積(  )
A.18B.19C.20D.21

查看答案和解析>>

科目: 來源: 題型:選擇題

16.在(1+x)+(1+x)2+(1+x)3+…+(1+x)9的展開式中,x2的系數(shù)等于( 。
A.280B.300C.210D.120

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知隨機(jī)變量ξ~B(n,p),且E(ξ)=12,D(ξ)=2.4,則n與p的值分別是( 。
A.15,$\frac{4}{5}$B.18,$\frac{2}{3}$C.20,$\frac{3}{5}$D.24,$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.由變量x與y相對應(yīng)的一組數(shù)據(jù)(3,y1),(5,y2),(7,y3),(12,y4),(13,y5)得到的線性回歸方程為$\stackrel{∧}{y}$=$\frac{1}{2}$x+20,則$\sum_{i=1}^{5}{y}_{i}$=( 。
A.25B.125C.120D.24

查看答案和解析>>

科目: 來源: 題型:解答題

13.目前,在“互聯(lián)網(wǎng)+”和“大數(shù)據(jù)”浪潮的推動(dòng)下,在線教育平臺如雨后春筍般蓬勃發(fā)展,與此同時(shí)好多學(xué)生家長和相關(guān)專家對在線教學(xué)也產(chǎn)生了質(zhì)疑,主要原因就是在線上教學(xué),學(xué)生是否能認(rèn)真聽講,在這種情況下,我市教育主管部門在我市各中小學(xué)采用分層抽樣的方式抽出15周歲以下和15周歲以上各200人進(jìn)行調(diào)查研究,其中15周歲以下的能認(rèn)真聽講的150人,不能做到認(rèn)真聽講的50人,15周歲以上的170人能認(rèn)真聽講,不能做到認(rèn)真聽講的30人,根據(jù)以上數(shù)據(jù)完成下列各題:
(1)完成下列2×2列聯(lián)表
不認(rèn)真聽講能認(rèn)真聽講總計(jì)
15周歲以下
15周歲以上
總計(jì)
(2)請說明是否有97.5%以上的把握認(rèn)為能否認(rèn)真聽見與年齡有關(guān)?
(3)現(xiàn)用分層抽樣的方法,從15周歲以下的人種抽取8人,在這8人中任取兩人進(jìn)行座談,求抽到的人中至少有一人能認(rèn)真聽講的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)

P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案