相關(guān)習(xí)題
 0  231836  231844  231850  231854  231860  231862  231866  231872  231874  231880  231886  231890  231892  231896  231902  231904  231910  231914  231916  231920  231922  231926  231928  231930  231931  231932  231934  231935  231936  231938  231940  231944  231946  231950  231952  231956  231962  231964  231970  231974  231976  231980  231986  231992  231994  232000  232004  232006  232012  232016  232022  232030  266669 

科目: 來源: 題型:填空題

8.經(jīng)過兩條直線2x-y-3=0和4x-3y-5=0的交點(diǎn),并且與直線2x+3y+5=0垂直的直線方程為3x-2y-4=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.圓x2+y2=4與圓x2+y2-4x+4y-12=0的公共弦所在直線和兩坐標(biāo)軸所圍成的面積為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目: 來源: 題型:填空題

6.若關(guān)于x的不等式acos2x+cosx≥-1恒成立,則實(shí)數(shù)a的取值范圍是[$\frac{2-\sqrt{2}}{4}$,$\frac{2+\sqrt{2}}{4}$].

查看答案和解析>>

科目: 來源: 題型:填空題

5.三棱錐P-ABC是半徑為3的球內(nèi)接正三棱錐,則P-ABC體積的最大值為8$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.若定義在區(qū)間D上的函數(shù)y=f(x)滿足:對?x∈D,?M∈R,使得|f(x)|≤M恒成立,則稱函數(shù)y=f(x)在區(qū)間D上有界.則下列函數(shù)中有界的是:①④⑤.
①y=sinx;②$y=x+\frac{1}{x}$;③y=tanx;④$y=\frac{{{e^x}-{e^{-x}}}}{{{e^x}+{e^{-x}}}}$;
⑤y=x3+ax2+bx+1(-4≤x≤4),其中a,b∈R.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知命題p:“函數(shù)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函數(shù)”,命題q:“曲線$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$表示橢圓”,若“¬p∨¬q”是假命題,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

2.(1)設(shè)x>0,y>0,若$\sqrt{2}$是2x與4y的等比中項,則①x2+2y2的最小值為$\frac{1}{3}$.②$\frac{1}{x}+\frac{1}{y}$的最小值為3+2$\sqrt{2}$.
(2)根據(jù)以上兩個小題的解答,總結(jié)說明含條件等式的求最值問題的解決方法(寫出兩個)
①二次函數(shù)的性質(zhì)②均值不等式.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在平面直角坐標(biāo)系中,定點(diǎn)F1(1,0),F(xiàn)2(-1,0),動點(diǎn)P與兩定點(diǎn)F1,F(xiàn)2距離的比為一個正數(shù)m.
(1)求點(diǎn)P的軌跡方程C,并說明軌跡是什么圖形;
(2)若m=$\frac{\sqrt{2}}{2}$,過點(diǎn)A(1,2)作傾斜角互補(bǔ)的兩條直線,分別交曲線C于P,Q兩點(diǎn),求直線PQ的斜率.

查看答案和解析>>

科目: 來源: 題型:填空題

20.設(shè)函數(shù)f(x)的定義域為D,若存在非零實(shí)數(shù)m,使得對于任意x∈M(M⊆D),有(x-m)∈D且f(x-m)≤f(x),則稱f(x)為M上的m度低調(diào)函數(shù).如果定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的5度低調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍為-$\frac{\sqrt{5}}{2}$≤a≤$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知f(x)=x|x-a|+b,x∈R.
(1)當(dāng)a=1,b=1時,若$f(x)=\frac{5}{4}$,求x的值;
(2)若b<0,且對任何x∈(0,1]不等式f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案