相關(guān)習(xí)題
 0  231862  231870  231876  231880  231886  231888  231892  231898  231900  231906  231912  231916  231918  231922  231928  231930  231936  231940  231942  231946  231948  231952  231954  231956  231957  231958  231960  231961  231962  231964  231966  231970  231972  231976  231978  231982  231988  231990  231996  232000  232002  232006  232012  232018  232020  232026  232030  232032  232038  232042  232048  232056  266669 

科目: 來源: 題型:解答題

10.已知兩定點(diǎn)$M(-\sqrt{6},0),N(\sqrt{6},0)$,動(dòng)點(diǎn)P滿足$\overrightarrow{PM}•\overrightarrow{PN}=0$,由點(diǎn)P向x軸作垂線PQ,垂足為Q,點(diǎn)R滿足$\overrightarrow{PR}=(\sqrt{3}-1)\overrightarrow{RQ}$,點(diǎn)R的軌跡為C.
(1)求曲線C的方程;
(2)直線l與x軸交于點(diǎn)E,與曲線C交于A、B兩點(diǎn),是否存在點(diǎn)E,使得$\frac{1}{{EA}^{2}}$+$\frac{1}{{EB}^{2}}$為定值?若存在,請指出點(diǎn)E的坐標(biāo),并求出該定值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為線段DD1,BD的中點(diǎn).
(1)求異面直線EF與BC所成的角的正切值.
(2)求三棱錐C-B1D1F的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知中心在原點(diǎn)的橢圓Γ1和拋物線Γ2有相同的焦點(diǎn)(1,0),橢圓Γ1的離心率為$\frac{1}{2}$,拋物線Γ2的頂點(diǎn)為原點(diǎn).
(Ⅰ) 求橢圓Γ1和拋物線Γ2的方程;
(Ⅱ) 設(shè)點(diǎn)P為拋物線Γ2準(zhǔn)線上的任意一點(diǎn),過點(diǎn)P作拋物線Γ2的兩條切線PA,PB,其中A,B為切點(diǎn).設(shè)直線PA,PB的斜率分別為k1,k2,求證:k1k2為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足4Sn=an+12-4n-1,n∈N*,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對一切正整數(shù)n,有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=ex-ax-1(a為常數(shù))在x=ln2處取得極值.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>0時(shí),ex>x2+1;
(3)證明:當(dāng)n∈N*時(shí),1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$>ln$\frac{(n+1)^{3}}{(3e)^{n}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知f(x)=sin(2x+φ),若$f(\frac{π}{3})=0$,則函數(shù)f(x)圖象的一條對稱軸直線是( 。
A.$x=\frac{π}{3}$B.$x=\frac{2π}{3}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{12}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長為$4(\sqrt{2}+1)$.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)探究$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$是否是個(gè)定值,若是,求出這個(gè)定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知
曲線C1:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=3,曲線C2:$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t+1}\end{array}\right.$,(t為參數(shù)).
(I)寫出C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)設(shè)C1和C2的交點(diǎn)為P,求點(diǎn)P在直角坐標(biāo)系中的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)A、B分別是直線y=$\frac{{\sqrt{2}}}{2}$x和y=-$\frac{{\sqrt{2}}}{2}$x上的動(dòng)點(diǎn),且|AB|=$\sqrt{2}$,設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(1)求點(diǎn)P的軌跡方程;
(2)過點(diǎn)($\sqrt{3}$,0)做兩條相互垂直的直線l1,l2,直線l1,l2與點(diǎn)P的軌跡相交弦分別為CD、EF,設(shè)CD、EF的弦中點(diǎn)分別為M、N,求證:直線MN恒過一個(gè)定點(diǎn).

查看答案和解析>>

科目: 來源: 題型:填空題

1.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,離心率為$\frac{\sqrt{3}}{3}$,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為$\frac{4\sqrt{3}}{3}$
(1)求橢圓的方程
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn),若$\overrightarrow{AC}$•$\overrightarrow{DB}$+$\overrightarrow{AD}$•$\overrightarrow{CB}$=8,求k的值.

查看答案和解析>>

同步練習(xí)冊答案