分析 (1)連結(jié)BD1,則∠D1BC位所求線面角,在Rt△BCD1中計算tan∠D1BC;
(3)證明CF⊥平面BDD1B1,則V${\;}_{C-{B}_{1}{D}_{1}F}$=$\frac{1}{3}{S}_{△{B}_{1}{D}_{1}F}•CF$.
解答 解:(1)連接BD1,
∵E,F(xiàn)分別為線段DD1,BD的中點,∴EF∥BD1,
故∠D1BC即為異面直線EF與BC所成的角.
∵BC⊥平面CDD1C1,CD1?平面CDD1C1,
∴BC⊥CD1.
∵正方體棱長為2,∴CD1=2$\sqrt{2}$,
∴tan∠D1BC=$\frac{C{D}_{1}}{BC}$=$\sqrt{2}$,
所以異面直線EF與BC所成的角的正切值為$\sqrt{2}$.
(2)∵BB1⊥平面ABCD,CF?平面ABCD,
∴BB1⊥CF,
∵CB=CD,F(xiàn)是BD中點,
∴CF⊥BD,又BB1∩BD=B,BB1?平面BDD1B1,BD?平面BDD1B1,
∴CF⊥平面BDD1B1,
又CF=$\frac{1}{2}$BD=$\sqrt{2}$,S${\;}_{△{B}_{1}{D}_{1}F}$=$\frac{1}{2}×{B}_{1}{D}_{1}×B{B}_{1}$=2$\sqrt{2}$.
∴V${\;}_{C-{B}_{1}{D}_{1}F}$=$\frac{1}{3}{S}_{△{B}_{1}{D}_{1}F}•CF$=$\frac{1}{3}×2\sqrt{2}×\sqrt{2}$=$\frac{4}{3}$,
所以三棱錐C-B1D1F的體積為$\frac{4}{3}$.
點評 本題考查了空間角的計算,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin($\frac{1}{3}$x+$\frac{π}{3}$),x∈R | B. | y=sin(3x+$\frac{π}{3}$),x∈R | C. | y=sin(3x+$\frac{π}{9}$),x∈R | D. | y=-sin3x,x∈R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12個 | B. | 10個 | C. | 8個 | D. | 6個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com