相關(guān)習(xí)題
 0  232338  232346  232352  232356  232362  232364  232368  232374  232376  232382  232388  232392  232394  232398  232404  232406  232412  232416  232418  232422  232424  232428  232430  232432  232433  232434  232436  232437  232438  232440  232442  232446  232448  232452  232454  232458  232464  232466  232472  232476  232478  232482  232488  232494  232496  232502  232506  232508  232514  232518  232524  232532  266669 

科目: 來源: 題型:填空題

1.已知直線l的傾斜角為135°,且經(jīng)過(2,2),則直線l的方程為x+y-4=0.

查看答案和解析>>

科目: 來源: 題型:解答題

20.為研究家用轎車在高速公路上的車速情況,交通部門召集了100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均速度情況為:在55名男性駕駛員中,平均車速超過80km/h的有40人,不超過80km/h的有15人,在45名女性駕駛員中,平均車速超過80km/h的有20人,不超過80km/h的有25人.
(1)(Ⅰ)完成下面的列聯(lián)表:
平均車速超過80km/h平均車速不超過80km/h合計(jì)
男性駕駛員
女性駕駛員
合計(jì)
(Ⅱ)判斷是否有99.5%的把握認(rèn)為平均車速超過80km/h與性別有關(guān).
參考公式與臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.15000.10000.0500.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(2)在被調(diào)查的駕駛員中,按分層抽樣從平均車速超過80km/h的人中抽取6人,再從這6人中常用簡單隨機(jī)抽樣的方法隨機(jī)抽取2人,求這2人恰好為1名男性1名女性的概率;
(3)以上述樣本數(shù)據(jù)估計(jì)總體,在高速公路上行駛的家用轎車中隨機(jī)抽取3輛,記這3輛車均為男性駕駛員且車速超過80km/h的車輛數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知公差不等于零的等差數(shù)列{an}中,a2=5,a1,a4,a13為等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式
(2)求數(shù)列{an•bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目: 來源: 題型:填空題

18.在邊長為1的等邊△ABC中,點(diǎn)P為邊BC上一動點(diǎn),則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為$-\frac{1}{16}$.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知sinα=$\frac{{\sqrt{5}}}{5}$,則sin4α-cos4α的值為-$\frac{3}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.對于定義在數(shù)集R上的函數(shù)f(x),如果存在實(shí)數(shù)x0,使f(x0)=x0,則x0叫作函數(shù)f(x)的一個不動點(diǎn).已知f(x)=x2+2ax+1不存在不動點(diǎn),那么a的取值范圍是$(-\frac{1}{2},\frac{3}{2})$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|2x-2|.
(Ⅰ)求不等式f(x)≥x-1的解集;
(Ⅱ)若f(x)的最大值是m,且a,b,c均為正數(shù),a+b+c=m,求$\frac{b^2}{a}+\frac{c^2}+\frac{a^2}{c}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知復(fù)數(shù)z=cosθ+isinθ(0≤θ≤2π),求θ為何值時,|1-i+z|取得最值.并求出它的最值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{3}$x3+(2a+1)x2+3a(a+2)x+1,a∈R.
(1)當(dāng)a=0時,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
(2)當(dāng)a=-1時,求函數(shù)y=f(x)在[0,4]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=xlnx
(Ⅰ)討論函數(shù)g(x)=$\frac{f(x)+k}{x}$(k∈R)的單調(diào)區(qū)間;
(Ⅱ)求證:除切點(diǎn)(e,e)之外,函數(shù)f(x)的圖象在直線h(x)=2x-e的上方.

查看答案和解析>>

同步練習(xí)冊答案