相關(guān)習(xí)題
 0  232542  232550  232556  232560  232566  232568  232572  232578  232580  232586  232592  232596  232598  232602  232608  232610  232616  232620  232622  232626  232628  232632  232634  232636  232637  232638  232640  232641  232642  232644  232646  232650  232652  232656  232658  232662  232668  232670  232676  232680  232682  232686  232692  232698  232700  232706  232710  232712  232718  232722  232728  232736  266669 

科目: 來源: 題型:選擇題

19.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的兩個(gè)不等實(shí)根,函數(shù)f(x)=$\frac{2x-k}{{{x^2}+1}}$的定義域?yàn)閇x1,x2],當(dāng)x2=1時(shí),f(x)≤2恒成立,則k的取值范圍是( 。
A.(-∞,-1)B.[-2,+∞)C.(1,2)D.$({\frac{1}{2},\frac{2}{3}})$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知$\frac{2}{x}+\frac{8}{y}$=1(x>0,y>0),則2x+y的最小值為( 。
A.18B.$12+8\sqrt{2}$C.$12+2\sqrt{2}$D.$12+4\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸為正半軸建立直角坐標(biāo)系,曲線M的方程為ρ2(3+cos2θ)=8.
(1)求曲線的直角坐標(biāo)方程
(2)若點(diǎn)A(0,m),B(n,0)在曲線M上,點(diǎn)F(0,-$\sqrt{{m^2}-{n^2}}}$),F(xiàn)P平行于x軸交曲線M于點(diǎn)P(x0,y0),其中m>0,n>0,x0>0,求證:PO∥BA.

查看答案和解析>>

科目: 來源: 題型:解答題

16.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{2}$,過F1且垂直于x軸的直線被橢圓C截得的線段長為1,A,B為橢圓C上的兩點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)直線OA,OB,AB的斜率分別為k1,k2,k.
(1)求橢圓C的方程
(2)當(dāng)k1k2-1=k1+k2時(shí),求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知f(x)在R上是奇函數(shù),且滿足f(x+5)=-f(x),當(dāng)x∈(0,5)時(shí),f(x)=x2-x,則f(2016)=( 。
A.-12B.-16C.-20D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知3a=5b=c,且$\frac{1}{a}$+$\frac{1}$=2,則${∫}_{0}^{C}({x}^{2}-1)dx$=(  )
A.$±2\sqrt{2}$B.$2\sqrt{2}$C.$±\sqrt{15}$D.$4\sqrt{15}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.閱讀程序框圖,輸出的結(jié)果是( 。
A.AB.BC.CD.D

查看答案和解析>>

科目: 來源: 題型:選擇題

12.曲線f(x)=-x2在點(diǎn)(1,-1)處的切線方程為( 。
A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與圓C2:x2+y2=b2,若在橢圓C1上存在點(diǎn)P,過P作圓的切線PA,PB,切點(diǎn)為A,B使得∠BPA=$\frac{π}{3}$,則橢圓C1的離心率的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目: 來源: 題型:選擇題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB-bcosA=$\frac{1}{2}$c,當(dāng)tan(A-B)取最大值時(shí),則角C的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案