相關(guān)習(xí)題
 0  233283  233291  233297  233301  233307  233309  233313  233319  233321  233327  233333  233337  233339  233343  233349  233351  233357  233361  233363  233367  233369  233373  233375  233377  233378  233379  233381  233382  233383  233385  233387  233391  233393  233397  233399  233403  233409  233411  233417  233421  233423  233427  233433  233439  233441  233447  233451  233453  233459  233463  233469  233477  266669 

科目: 來源: 題型:解答題

10.用二分法求函數(shù)y=2x3-3x2-5x+3在區(qū)間(-2,-1)內(nèi)的零點(diǎn).(精確到0.1)

查看答案和解析>>

科目: 來源: 題型:填空題

9.函數(shù)y=2tan(2x+$\frac{π}{3}$)圖象向右平移3個(gè)單位所得圖象的函數(shù)表達(dá)式為f(x)=2tan(2x-6+$\frac{π}{3}$).

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線段AC上(不含C點(diǎn)),DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(1)求證:PB⊥DE;
(2)若PE⊥BE,AE=1,
①試在線段BP上找一點(diǎn)M,使得CM∥平面PDE,求BM的長;
②求二面角D-PC-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知兩動(dòng)圓F1:(x+$\sqrt{3}$)2+y2=r2和F2:(x-$\sqrt{3}$)2+y2=(4-r)2(0<r<4),把它們的公共點(diǎn)的軌跡記為曲線C,若曲線C與y軸的正半軸的交點(diǎn)為M,且曲線C上的相異兩點(diǎn)A、B滿足:$\overrightarrow{MA}$•$\overrightarrow{MB}$=0.
(1)求曲線C的方程;
(2)證明直線AB恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求△ABM面積S的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=2x+a•2-x,其中常數(shù)a≠0.
(1)當(dāng)a=1時(shí),f(x)的最小值;
(2)當(dāng)a=256時(shí),是否存在實(shí)數(shù)k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)對任意x∈R恒成立?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖所示,使用紙板可以折疊粘貼制作一個(gè)形狀為正六棱柱形狀的花型鎖盒蓋的紙盒.
(1)求該紙盒的容積;
(2)如果有一張長為60cm,寬為40cm的矩形紙板,則利用這張紙板最多可以制作多少個(gè)這樣的紙盒(紙盒必須用一張紙板制成).

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知正四面體ABCD的棱長為2,E為棱AB的中點(diǎn),過E作其外接球的截面,則截面面積的最小值為$\frac{1}{2}$π.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.現(xiàn)從一個(gè)含有個(gè)體個(gè)數(shù)為6的總體中,用簡單隨機(jī)抽樣的方法抽取一個(gè)容量為2的樣本,則每一個(gè)個(gè)體被抽到的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.以上都不對

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如果命題“p∧q”是假命題,“¬p”是真命題,那么( 。
A.命題p一定是真命題B.命題q一定是真命題
C.命題q一定是假命題D.命題p也可以是假命題

查看答案和解析>>

科目: 來源: 題型:解答題

1.函數(shù)f(x)=mx2+(m-3)x+1的圖象與x軸的交點(diǎn)至少有一個(gè)在原點(diǎn)的右側(cè).
(1)求m的取值范圍;
(2)對于(1)中的m,設(shè)t=2-m,不等式k•(${\frac{3}{2}}$)[t]≥[t]([t][${\frac{1}{t}}$]+[t]+[${\frac{1}{t}}$]+1)恒成立,求k的取值范圍([x]表示不超過x的最大整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案