相關(guān)習(xí)題
 0  234571  234579  234585  234589  234595  234597  234601  234607  234609  234615  234621  234625  234627  234631  234637  234639  234645  234649  234651  234655  234657  234661  234663  234665  234666  234667  234669  234670  234671  234673  234675  234679  234681  234685  234687  234691  234697  234699  234705  234709  234711  234715  234721  234727  234729  234735  234739  234741  234747  234751  234757  234765  266669 

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a<0時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C和拋物線y2=x交于M,N兩點(diǎn),且直線MN恰好通過橢圓C的右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過橢圓C右焦點(diǎn)的直線l和橢圓C交于A,B兩點(diǎn),點(diǎn)P在橢圓上,且$\overrightarrow{OA}$=2$\overrightarrow{BP}$,其中O為坐標(biāo)原點(diǎn),求直線l的斜率.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P為拋物線上一點(diǎn),且在第一象限,PA⊥l,垂足為A,|PF|=4,則直線AF傾斜角為135°.

查看答案和解析>>

科目: 來源: 題型:解答題

16.求下列函數(shù)的定義域:
(1)y=(27-3x)${\;}^{\frac{1}{2}}$;
(2)y=(log${\;}_{\frac{1}{2}}$(x-1))${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.設(shè)映射f:x→x2+2x-1是實(shí)數(shù)集M到實(shí)數(shù)集N的映射.若對(duì)于實(shí)數(shù)a∈N,在M中不存在原像,則a的取值范圍是a<-2.

查看答案和解析>>

科目: 來源: 題型:填空題

14.函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且對(duì)區(qū)間(0,+∞)上任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,則實(shí)數(shù)m的值是2.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.某校共有17人獲得北大、清華保送資格,具體人數(shù)如下:
競(jìng)賽學(xué)科數(shù)學(xué)物理化學(xué)
北大642
清華104
若隨機(jī)從獲取北大、清華保送資格的學(xué)生中各取一名,則至少1人是參加數(shù)學(xué)競(jìng)賽的概率為( 。
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{15}{34}$D.$\frac{91}{136}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z滿足(1-2i)z=3+4i,則z=( 。
A.-1+2iB.-1-2iC.1-2iD.1+2i

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知集合A={1,2,3},B={2,3,6}定義運(yùn)算A?B=(x|x=ab,a∈A,b∈B)則A?B中所含元素的個(gè)數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目: 來源: 題型:解答題

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.
(1)若a,b,c成等比數(shù)列,cos B=$\frac{3}{5}$,求$\frac{cosA}{sinA}+\frac{cosC}{sinC}$的值.
(2)若角A,B,C成等差數(shù)列,且b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案