相關(guān)習(xí)題
 0  235884  235892  235898  235902  235908  235910  235914  235920  235922  235928  235934  235938  235940  235944  235950  235952  235958  235962  235964  235968  235970  235974  235976  235978  235979  235980  235982  235983  235984  235986  235988  235992  235994  235998  236000  236004  236010  236012  236018  236022  236024  236028  236034  236040  236042  236048  236052  236054  236060  236064  236070  236078  266669 

科目: 來(lái)源: 題型:解答題

8.已知等差數(shù)列{an}滿(mǎn)足:a1=2,且a22=a1a5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知數(shù)列{an}中,a1=1,an+1=an+3,若an=2 017,則n=( 。
A.667B.668C.669D.673

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.已知點(diǎn) A(-4,0),B(4,0),C(0,4),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則 b的取值范圍是(  )
A.$({0,4-2\sqrt{2}})$B.$({4-2\sqrt{2},2})$C.$({4-2\sqrt{2},\frac{4}{3}}]$D.$({\frac{4}{3},2}]$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.由曲線y=2$\sqrt{x}$,直線y=x-3及x軸所圍成的圖形的面積為(  )
A.12B.14C.16D.18

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+b2-c2=ab,c=3,sinA+sinB=2$\sqrt{6}$sinAsinB,則△ABC的周長(zhǎng)為 3+3$\sqrt{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,設(shè)E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)異面直線BP與CD所成角為45°,AP=1,AD=$\sqrt{3}$,求三棱錐E-ACD的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R).  
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)a的值組成的集合A;
(3)設(shè)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩個(gè)非零實(shí)根為x1,x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.如圖所示,已知單位正方體ABCD-A′B′C′D′,E是正方形BCC′B′的中心.
(1)求AE與下底面所成角的大小;
(2)求異面直線AE與DD′所成的角的大。
(理科)(3)求二面角E-AB-C的大。

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.(理科)在平面直角坐標(biāo)系中,x軸正半軸上有5個(gè)點(diǎn),y軸正半軸有3個(gè)點(diǎn),將x軸上這5個(gè)點(diǎn)和y軸上這3個(gè)點(diǎn)連成15條線段,這15條線段在第一象限內(nèi)的交點(diǎn)最多有30個(gè).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-ax2-3a2x+1(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間、極大值和極小值.
(Ⅱ)若x∈[a+1,a+2]時(shí),恒有f′(x)>-3a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案