相關(guān)習(xí)題
 0  235995  236003  236009  236013  236019  236021  236025  236031  236033  236039  236045  236049  236051  236055  236061  236063  236069  236073  236075  236079  236081  236085  236087  236089  236090  236091  236093  236094  236095  236097  236099  236103  236105  236109  236111  236115  236121  236123  236129  236133  236135  236139  236145  236151  236153  236159  236163  236165  236171  236175  236181  236189  266669 

科目: 來源: 題型:選擇題

7.計算cos$\frac{π}{8}$•cos$\frac{5π}{8}$的結(jié)果等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知sinα+cosα=$\frac{2}{3}$,則sin2α的值為(  )
A.$\frac{5}{9}$B.±$\frac{5}{9}$C.-$\frac{5}{9}$D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,在平行四邊形ABCD中,$\overrightarrow{AC}$=(3,2),$\overrightarrow{BD}$=(-1,2),則$\overrightarrow{AC}$•$\overrightarrow{AD}$等于( 。
A.1B.6C.-7D.7

查看答案和解析>>

科目: 來源: 題型:選擇題

4.若平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,$\overrightarrow{a}$=($\frac{3}{5}$,-$\frac{4}{5}$),|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|等于( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設(shè)平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$-2$\overrightarrow$等于( 。
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

2.為了得到周期y=sin(2x+$\frac{π}{6}$)的圖象,只需把函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象(  )
A.向左平移$\frac{π}{4}$個單位長度B.向右平移$\frac{π}{4}$個單位長度
C.向左平移$\frac{π}{2}$個單位長度D.向右平移$\frac{π}{2}$個單位長度

查看答案和解析>>

科目: 來源: 題型:選擇題

1.函數(shù)f(x)=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)(x∈R)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知$\frac{sinα-2cosα}{3sinα+5cosα}$=2,則tanα的值為( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.cos$\frac{5π}{3}$等于( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

18.閱讀下面材料,嘗試類比探究函數(shù)y=x2-$\frac{1}{{x}^{2}}$的圖象,寫出圖象特征,并根據(jù)你得到的結(jié)論,嘗試猜測作出函數(shù)對應(yīng)的圖象.
閱讀材料:
我國著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.
在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征.我們來看一個應(yīng)用函數(shù)的特征研究對應(yīng)圖象形狀的例子.
對于函數(shù)y=$\frac{1}{x}$,我們可以通過表達(dá)式來研究它的圖象和性質(zhì),如:
(1)在函數(shù)y=$\frac{1}{x}$中,由x≠0,可以推測出,對應(yīng)的圖象不經(jīng)過y軸,即圖象與y軸不相交;由y≠0,可以推測出,對應(yīng)的圖象不經(jīng)過x軸,即圖象與x軸不相交.
(2)在函數(shù)y=$\frac{1}{x}$中,當(dāng)x>0時y>0;當(dāng)x<0時y<0,可以推測出,對應(yīng)的圖象只能在第一、三象限;
(3)在函數(shù)y=$\frac{1}{x}$中,若x∈(0,+∞)則y>0,且當(dāng)x逐漸增大時y逐漸減小,可以推測出,對應(yīng)的圖象越向右越靠近x軸;若x∈(-∞,0),則y<0,且當(dāng)x逐漸減小時y逐漸增大,可以推測出,對應(yīng)的圖象越向左越靠近x軸;
(4)由函數(shù)y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函數(shù),可以推測出,對應(yīng)的圖象關(guān)于原點(diǎn)對稱.
結(jié)合以上性質(zhì),逐步才想出函數(shù)y=$\frac{1}{x}$對應(yīng)的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類討論的思想,既進(jìn)行了靜態(tài)(特殊點(diǎn))的研究,又進(jìn)行了動態(tài)(趨勢性)的思考.讓我們享受數(shù)學(xué)研究的過程,傳播研究數(shù)學(xué)的成果.

查看答案和解析>>

同步練習(xí)冊答案