相關(guān)習(xí)題
 0  236370  236378  236384  236388  236394  236396  236400  236406  236408  236414  236420  236424  236426  236430  236436  236438  236444  236448  236450  236454  236456  236460  236462  236464  236465  236466  236468  236469  236470  236472  236474  236478  236480  236484  236486  236490  236496  236498  236504  236508  236510  236514  236520  236526  236528  236534  236538  236540  236546  236550  236556  236564  266669 

科目: 來源: 題型:解答題

5.已知函數(shù)$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期和對稱軸;
(2)將函數(shù)f(x)的圖象各點縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍,然后向左平移$\frac{π}{3}$個單位,得函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,a+c=6,且g(B)=0,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

4.過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準(zhǔn)線的交點為B,點A在拋物線的準(zhǔn)線上的射影為C,若$\overrightarrow{AF}=\overrightarrow{FB}$,$\overrightarrow{BA}•\overrightarrow{BC}=12$,則拋物線的方程為y2=2x.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,則cosθ=$\frac{{7\sqrt{2}}}{10}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F(xiàn)分別為AB,BC的中點,則$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點,若雙曲線右支上存在一點P,使得$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,其中O為坐標(biāo)原點,且$|\overrightarrow{P{F_1}}|=3|\overrightarrow{P{F_2}}|$,則該雙曲線的離心率為(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

20.2016年1月1日,我國實施“全面二孩”政策,中國社會科學(xué)院在某地隨機(jī)抽取了150名已婚男性,其中愿意生育二孩的有100名,經(jīng)統(tǒng)計,該100名男性的年齡情況對應(yīng)的頻率分布直方圖如下:
(1)根據(jù)頻率分布直方圖,估計這100名已婚男性的年齡平均值$\overline{x}$、眾數(shù)、中位數(shù)和樣本方差s2(同組數(shù)據(jù)用區(qū)間的中點值代替,結(jié)果精確到個位);
(2)若在愿意生育二孩的且年齡在[30,34),[34,38),[38,42)的三組已婚男性中,用分層抽樣的方法抽取19人,試估算每個年齡段應(yīng)各抽取多少人?

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-ax+b(a,b∈R)有兩個不同的零點x1,x2
(Ⅰ)求f(x)的最值;
(Ⅱ)證明:x1•x2<$\frac{1}{{a}^{2}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F(c,0)作x軸的垂線,與橢圓C在第一象限內(nèi)交于點A,過A作直線x=$\frac{{a}^{2}}{c}$的垂線,垂足為B,|AF|=$\frac{\sqrt{3}}{3}$,|AB|=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為圓E:x2+y2=4上任意一點,過點P作橢圓C的兩條切線l1、l2,設(shè)l1、l2分別交圓E于點M、N,證明:MN為圓E的直徑.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知數(shù)列{an}滿足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}{a}_{n},n為偶數(shù)}\\{{a}_{n}+1,n為奇數(shù)}\end{array}\right.$,若bn=a2n-1-1.
(Ⅰ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項和為Sn,求S2n

查看答案和解析>>

科目: 來源: 題型:解答題

16.心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全球組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題,代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計如表:(單位:人)
  立體幾何題 代數(shù)題 總計
 男同學(xué) 22 8 30
 女同學(xué) 8 12 20
 總計 30 20 50
(Ⅰ)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(Ⅱ)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為$\frac{4}{5}$,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進(jìn)行探究,記抽取的兩人中答對的人數(shù)為X,求 X的分布列及數(shù)學(xué)期望.
附表及公式
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊答案