相關(guān)習(xí)題
 0  236485  236493  236499  236503  236509  236511  236515  236521  236523  236529  236535  236539  236541  236545  236551  236553  236559  236563  236565  236569  236571  236575  236577  236579  236580  236581  236583  236584  236585  236587  236589  236593  236595  236599  236601  236605  236611  236613  236619  236623  236625  236629  236635  236641  236643  236649  236653  236655  236661  236665  236671  236679  266669 

科目: 來源: 題型:填空題

17.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2-y≥0}\\{x-3y+2≤0}\\{4x-5y+2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最大值為0.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知正三棱柱ABC-A1B1C1的頂點(diǎn)都在球O的球面上,AB=2,AA1=4,則球面O的表面積為( 。
A.$\frac{32π}{3}$B.32πC.64πD.$\frac{64π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與圓(x+1)2+(y-$\sqrt{3}$)2=1相切,則此雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

14.設(shè)直線l為拋物線y2=2px(p>0)的焦點(diǎn),且交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于C點(diǎn),已知|AF|=4,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,則p=2.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.我國古代數(shù)學(xué)名著《九章算術(shù)》中,有已知長方形面積求一邊的算法,其方法的前兩步為:
第一步:構(gòu)造數(shù)列1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,…,$\frac{1}{n}$.①
第二步:將數(shù)列①的各項(xiàng)乘以n,得到數(shù)列(記為)a1,a2,a3,…,an.則a1a2+a2a3+…+an-1an=( 。
A.n2B.(n-1)2C.n(n-1)D.n(n+1)

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow$=-2,則cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知等比數(shù)列{an}中,a1+a2=3,a3+a4=12,則a5+a6=(  )
A.3B.15C.48D.63

查看答案和解析>>

科目: 來源: 題型:解答題

10.?dāng)?shù)列{an}是公差不為零的等差數(shù)列,Sn是其前n項(xiàng)和,已知a2+a3+a5=20,且a2、a4、a8成等比數(shù)列,記M=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.
(1)求M;
(2)數(shù)列{bn}的前n項(xiàng)和為Tn,已知Tn=2(bn-1),試比較Tn與M+1的大。

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖所示,在三棱錐D-ABC中,AB=BC=CD=2,AD=2$\sqrt{3}$,∠ABC=90°,平面ACD⊥平面ABC.
(1)求證:AB⊥BD;
(2)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

8.某校為了了解高三學(xué)生體育達(dá)標(biāo)情況,在高三學(xué)生體育達(dá)標(biāo)成績中隨機(jī)抽取50個(gè)進(jìn)行調(diào)研,按成績分組:第l組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示:若要在成績較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)行復(fù)查:
(1)已知學(xué)生甲的成績?cè)诘?組,求學(xué)生甲被抽中復(fù)查的概率;
(2)在已抽取到的6名學(xué)生中隨機(jī)抽取2名學(xué)生接受籃球項(xiàng)目的考核,求其中一人在第3組,另一人在第4組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案