相關(guān)習題
 0  236714  236722  236728  236732  236738  236740  236744  236750  236752  236758  236764  236768  236770  236774  236780  236782  236788  236792  236794  236798  236800  236804  236806  236808  236809  236810  236812  236813  236814  236816  236818  236822  236824  236828  236830  236834  236840  236842  236848  236852  236854  236858  236864  236870  236872  236878  236882  236884  236890  236894  236900  236908  266669 

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=-$\sqrt{3}sinxsin(x+\frac{π}{2})+{cos^2}x-\frac{1}{2}$(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)的圖象上所有點的橫坐標擴大到原來的2倍,再向右平移$\frac{π}{6}$個單位長度,得g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知0<α<π,sinα+cosα=$\frac{1}{5}$.
(1)求tanα的值;
(2)求sin2α-3sinαcosα-4cos2α的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)f(x)為定義在R上的奇函數(shù),當x≥0時,f(x)=2x+sin$\frac{πx}{2}$+b(b為常數(shù)),則f(-1)=( 。
A.-3B.-2C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域為[-1,5],部分對應值如下表,
x-1045
f(x)-122-1
f(x)的導函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點為0,4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④函數(shù)y=f(x)最多有3個零點.
其中正確命題的序號是(  )
A.①②B.③④C.①②④D.②③④

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知y=$\frac{1}{3}{x^3}+b{x^2}$+(b+2)x+3是R上的單調(diào)函數(shù),則b的取值范圍是( 。
A.-1≤b≤2B.b≤-1或b≥2C.-1<b<2D.b<-1或b>2

查看答案和解析>>

科目: 來源: 題型:選擇題

7.直線2x-4y+7=0的斜率是( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.設(shè)點${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,動點P滿足|PF1|+|PF2|=4,P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過定點D(t,0)(|t|<2)作直線l交曲線C于A、B兩點,設(shè)O為坐標原點,若直線l與x軸垂直,求△OAB面積的最大值;
(3)過點(1,0)作直線l交曲線C于A、B兩點,在x軸上是否存在一點E,使直線AE和BE的斜率的乘積為非零常數(shù)?若存在,求出點E的坐標和這個常數(shù);若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.關(guān)于x、y的方程組$\left\{\begin{array}{l}(m+1)x-y-3m=0\\ 4x+(m-1)y+7=0\end{array}\right.$(  )
A.有唯一的解B.有無窮多解
C.由m的值決定解的情況D.無解

查看答案和解析>>

科目: 來源: 題型:填空題

4.設(shè)拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則p的值為2或8.

查看答案和解析>>

科目: 來源: 題型:填空題

3.設(shè)曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+3cosθ\\ y=1+3sinθ\end{array}\right.$(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l的距離為$\frac{{7\sqrt{10}}}{10}$的點的個數(shù)為4個.

查看答案和解析>>

同步練習冊答案