相關(guān)習(xí)題
 0  237371  237379  237385  237389  237395  237397  237401  237407  237409  237415  237421  237425  237427  237431  237437  237439  237445  237449  237451  237455  237457  237461  237463  237465  237466  237467  237469  237470  237471  237473  237475  237479  237481  237485  237487  237491  237497  237499  237505  237509  237511  237515  237521  237527  237529  237535  237539  237541  237547  237551  237557  237565  266669 

科目: 來源: 題型:填空題

18.在(x+a)9的展開式中,若第四項(xiàng)的系數(shù)為84,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知三棱錐A-BCD內(nèi)接與球O,且$BC=BD=CD=2\sqrt{3}$,若三棱錐A-BCD體積的最大值為$4\sqrt{3}$,則球O的表面積為( 。
A.16πB.25πC.36πD.64π

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知集合A={-1,0,1,2,3,4},B={x|x2<16,x∈N},則A∩B等于(  )
A.{-1,0,1,2,3}B.{0,1,2,3,4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,已知正三棱柱ABC-A'B'C'棱長均為2,E為AB中點(diǎn).點(diǎn)D在側(cè)棱BB'上.
(Ⅰ)求AD+DC'的最小值;
(Ⅱ)當(dāng)AD+DC'取最小值時,在CC'上找一點(diǎn)F,使得EF∥面ADC'.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在空間內(nèi),可以確定一個平面的條件是( 。
A.兩兩相交的三條直線
B.三條直線,它們兩兩相交,但不交于同一點(diǎn)
C.三個點(diǎn)
D.三條直線,其中的一條與另外兩條直線分別相交

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)$f(x)={e^x}-\frac{1}{2}{(x+a)^2}$.
(1)若曲線y=f(x)在點(diǎn)x=0處的切線斜率為1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x≥0時,f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,三棱錐P-ABC中,PA⊥平面ABC,∠ABC=90°,PA=AC=2,D是PA的中點(diǎn),E是CD的中點(diǎn),點(diǎn)F在PB上,$\overrightarrow{PF}=3\overrightarrow{FB}$.
(1)證明:EF∥平面ABC;
(2)若∠BAC=60°,求點(diǎn)P到平面BCD的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{2}{3}{x^3}+a{x^2}-(a-b)x+c$的兩個極值點(diǎn)分別為x1,x2,且x1∈(-∞,-1),x2∈(-1,0),點(diǎn)P(a,b)表示的平面區(qū)域?yàn)镈,若函數(shù)y=logm(x+2)(m>0,m≠1)的圖象經(jīng)過區(qū)域D,則實(shí)數(shù)m的取值范圍是( 。
A.(3,+∞)B.[3,+∞)C.(1,3)D.(1,3]

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知拋物線E:y2=8x,圓M:(x-2)2+y2=4,點(diǎn)N為拋物線E上的動點(diǎn),O為坐標(biāo)原點(diǎn),線段ON的中點(diǎn)的軌跡為曲線C.
(1)求拋物線C的方程;
(2)點(diǎn)Q(x0,y0)(x0≥5)是曲線C上的點(diǎn),過點(diǎn)Q作圓M的兩條切線,分別與x軸交于A,B兩點(diǎn).求△QAB面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x+1|+|2x-3|,
(1)若關(guān)于x的不等式f(x)>|1-3a|恒成立,求實(shí)數(shù)a的取值范圍;
(2)若關(guān)于t的一元二次方程${t^2}-4\sqrt{2}t+f(m)=0$有實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案