相關習題
 0  237402  237410  237416  237420  237426  237428  237432  237438  237440  237446  237452  237456  237458  237462  237468  237470  237476  237480  237482  237486  237488  237492  237494  237496  237497  237498  237500  237501  237502  237504  237506  237510  237512  237516  237518  237522  237528  237530  237536  237540  237542  237546  237552  237558  237560  237566  237570  237572  237578  237582  237588  237596  266669 

科目: 來源: 題型:解答題

12.已知動點M到定點F(1,0)和定直線x=4的距離之比為$\frac{1}{2}$,設動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點F作斜率不為0的任意一條直線與曲線C交于兩點A,B,試問在x軸上是否存在一點P(與點F不重合),使得∠APF=∠BPF,若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知$f(x)=\frac{kx+b}{e^x}$.
(1)若f(x)在x=0處的切線方程為y=x+1,求k與b的值;
(2)求$\int_0^1{\frac{x-1}{e^x}}{d_x}$.

查看答案和解析>>

科目: 來源: 題型:填空題

10.若(1+2x)n(n∈N*)二項式展開式中的各項系數(shù)之和為an,其二項式系數(shù)之和為bn,則$\lim_{n→∞}\frac{{{b_{n+1}}-{a_n}}}{{{a_{n+1}}+{b_n}}}$=$-\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知拋物線Γ:y2=2px上一點M(3,m)到焦點的距離為4,動直線y=kx(k≠0)交拋物線Γ于坐標原點O和點A,交拋物線Γ的準線于點B,若動點P滿足$\overrightarrow{OP}=\overrightarrow{BA}$,動點P的軌跡C的方程為F(x,y)=0;
(1)求出拋物線Γ的標準方程;
(2)求動點P的軌跡方程F(x,y)=0;(不用指明范圍)
(3)以下給出曲線C的四個方面的性質,請你選擇其中的三個方面進行研究:①對稱性;②圖形范圍;③漸近線;④y>0時,寫出由F(x,y)=0確定的函數(shù)y=f(x)的單調區(qū)間,不需證明.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-4x+a+3,a∈R;
(1)若函數(shù)y=f(x)在[-1,1]上存在零點,求a的取值范圍;
(2)設函數(shù)g(x)=bx+5-2b,b∈R,當a=3時,若對任意的x1∈[1,4],總存在x2∈[1,4],使得g(x1)=f(x2),求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

7.若過點A(1,0),且與y軸的夾角為$\frac{π}{6}$的直線與拋物線y2=4x交于P、Q兩點,則|PQ|=$\frac{16}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知某棱錐的三視圖如圖所示,俯視圖為正方形及一條對角線,根據(jù)圖中所給的數(shù)據(jù),該棱錐外接球的體積是$\frac{{8\sqrt{2}}}{3}π$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.一個扇形的弧長與面積的數(shù)值都是5,則這個扇形中心角的度數(shù)( 。
A.5B.$\frac{5}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.設數(shù)列{an}的前n項和Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=3Sn-2n,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求證:Sn≥1,n∈N*

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知偶函數(shù)f(x)的定義域為R,且在(-∞,0)上是增函數(shù),則f(-$\frac{3}{4}$)與f(a2-a+1)的大小關系為( 。
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

同步練習冊答案