相關(guān)習(xí)題
 0  238053  238061  238067  238071  238077  238079  238083  238089  238091  238097  238103  238107  238109  238113  238119  238121  238127  238131  238133  238137  238139  238143  238145  238147  238148  238149  238151  238152  238153  238155  238157  238161  238163  238167  238169  238173  238179  238181  238187  238191  238193  238197  238203  238209  238211  238217  238221  238223  238229  238233  238239  238247  266669 

科目: 來源: 題型:解答題

4.已知數(shù)列{an} 的前n項(xiàng)和為${s_n}=6{n^2}-5n-4$,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:填空題

3.P是雙曲線$\frac{x^2}{64}-\frac{y^2}{36}=1$上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),且|PF1|=15,則|PF2|的值是31.

查看答案和解析>>

科目: 來源: 題型:填空題

2.如圖,點(diǎn)P(x,y)(x>0,y>0)是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且$\overrightarrow{{F}_{2}M}$•$\overrightarrow{MP}$=0.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=$\frac{1}{2}$|NF1|=…=a.類似地:點(diǎn)P(x,y)(x>0,y>0)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且$\overrightarrow{{F}_{2}M}$•$\overrightarrow{MP}$=0,則|OM|的取值范圍是(0,c)

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知點(diǎn)P在雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$,且|PF1|•|PF2|=32,則△PF1F2的面積等于16.

查看答案和解析>>

科目: 來源: 題型:填空題

20.若直線2ax-by+4=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長為4,則ab的最大值是1.

查看答案和解析>>

科目: 來源: 題型:填空題

19.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足對任意的正整數(shù)n,均有Sn+3=8Sn+3,則a1=$\frac{3}{7}$,公比q=2.

查看答案和解析>>

科目: 來源: 題型:解答題

18.等腰△ABC,E為底邊BC的中點(diǎn),沿AE折疊,如圖,將C折到點(diǎn)P的位置,使二面角P-AE-C的大小為120°,設(shè)點(diǎn)P在面ABE上的射影為H.
(I)證明:點(diǎn)H為BE的中點(diǎn);
(II)若AB=AC=2$\sqrt{2}$,AB⊥AC,求直線BE與平面ABP所成角的正切值.

查看答案和解析>>

科目: 來源: 題型:填空題

17.一質(zhì)點(diǎn)按規(guī)律s=2t3運(yùn)動(dòng),則其在t=1時(shí)的瞬時(shí)速度為6m/s.

查看答案和解析>>

科目: 來源: 題型:解答題

16.(1)求函數(shù)f(x)=xlnx-(1-x)ln(1-x)在0<x≤$\frac{1}{2}$上的最大值;
(2)證明:不等式x1-x+(1-x)x≤$\sqrt{2}$,在0<x<1上恒成立.

查看答案和解析>>

科目: 來源: 題型:填空題

15.若x、y滿足約束條件$\left\{\begin{array}{l}{2x+y≤8}\\{x+3y≤9}\\{x≥0,y≥0}\end{array}\right.$,則4x+y的最大值為16.

查看答案和解析>>

同步練習(xí)冊答案