相關(guān)習(xí)題
 0  238275  238283  238289  238293  238299  238301  238305  238311  238313  238319  238325  238329  238331  238335  238341  238343  238349  238353  238355  238359  238361  238365  238367  238369  238370  238371  238373  238374  238375  238377  238379  238383  238385  238389  238391  238395  238401  238403  238409  238413  238415  238419  238425  238431  238433  238439  238443  238445  238451  238455  238461  238469  266669 

科目: 來源: 題型:解答題

5.設(shè)三個各項均為正整數(shù)的無窮數(shù)列{an},{bn},{cn}.記數(shù)列{bn},{cn}的前n項和分別為Sn,Tn,若對任意的n∈N*,都有an=bn+cn,且Sn>Tn,則稱數(shù)列{an}為可拆分?jǐn)?shù)列.
(1)若${a_n}={4^n}$,且數(shù)列{bn},{cn}均是公比不為1的等比數(shù)列,求證:數(shù)列{an}為可拆分?jǐn)?shù)列;
(2)若an=5n,且數(shù)列{bn},{cn}均是公差不為0的等差數(shù)列,求所有滿足條件的數(shù)列{bn},{cn}的通項公式;
(3)若數(shù)列{an},{bn},{cn}均是公比不為1的等比數(shù)列,且a1≥3,求證:數(shù)列{an}為可拆分?jǐn)?shù)列.

查看答案和解析>>

科目: 來源: 題型:解答題

4.某工廠要生產(chǎn)體積為定值V的漏斗,現(xiàn)選擇半徑為R的圓形馬口鐵皮,截取如圖所示的扇形,焊制成漏斗.
(1)若漏斗的半徑為$\frac{\sqrt{3}}{2}$R,求圓形鐵皮的半徑R;
(2)這張圓形鐵皮的半徑R至少是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,過右焦點F的直線l交橢圓于A、B兩點,當(dāng)l與x軸垂直時,AB長為$\frac{{4\sqrt{3}}}{3}$.   
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓上存在一點P,使得$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,求直線l的斜率.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,四邊形ABCD為矩形,AB⊥BP,M為AC的中點,N為PD上一點.
(1)若MN∥平面ABP,求證:N為PD的中點;
(2)若平面ABP⊥平面APC,求證:PC⊥平面ABP.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊,作兩個角α,β,它們終邊分別經(jīng)過點P,Q,其中$P(\frac{1}{2},{cos^2}θ)$,Q(sin2θ,-1),θ∈R,且$sinα=\frac{4}{5}$.
(1)求cos2θ的值;
(2)求tan(α+β)的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知如表為“五點法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時的五個關(guān)鍵點的坐標(biāo)(其中A>0,ω>0,|φ|<π).
x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ) 請寫出函數(shù)f(x)的解析式,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足3bcosC=3a-c,則cosB=(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$a{cos^2}\frac{B}{2}+b{cos^2}\frac{A}{2}=\frac{3}{2}c,a=2b$.
(1)證明:△ABC為鈍角三角形;
(2)若△ABC的面積為$3\sqrt{15}$,求b的值.

查看答案和解析>>

科目: 來源: 題型:填空題

17.我國古代數(shù)學(xué)家趙爽利用“勾股圈方圖”巧妙的證明了勾股定理,成就了我國古代數(shù)學(xué)的驕傲,后人稱之為“趙爽弦圖”.他是由四個全等的直角三角形和中間的一個小正方形拼成的一個大正方形,若直角三角形中較小的銳角記為θ,大正方形的面積為25,小正方形的面積為1,則$sin\frac{θ}{2}+cos\frac{θ}{2}$=$\frac{{2\sqrt{10}}}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-2|.
(1)若對任意的a,b,c∈R(a≠c),不等式$\frac{1}{2}$f(m)≤$\frac{|a-b|+|c-d|}{|a-c|}$恒成立,求實數(shù)m的最大值;
(2)在(1)的條件下,解不等式f(x)≤2-|x-m|.

查看答案和解析>>

同步練習(xí)冊答案