相關(guān)習(xí)題
 0  239474  239482  239488  239492  239498  239500  239504  239510  239512  239518  239524  239528  239530  239534  239540  239542  239548  239552  239554  239558  239560  239564  239566  239568  239569  239570  239572  239573  239574  239576  239578  239582  239584  239588  239590  239594  239600  239602  239608  239612  239614  239618  239624  239630  239632  239638  239642  239644  239650  239654  239660  239668  266669 

科目: 來源: 題型:填空題

20.命題“?x0∈R,x02>0”的否定是?x∈R,x2≤0.

查看答案和解析>>

科目: 來源: 題型:解答題

19.(1)求函數(shù)$y=\sqrt{1-cos\frac{x}{2}}$的定義域;
(2)求函數(shù)$y=\frac{3sinx+1}{sinx-2}$的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(1,$\sqrt{2}$),$\overrightarrow$=($\frac{1}{2}$,sinθ),若$\overrightarrow{a}$∥$\overrightarrow$,則銳角θ=$\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的圖象如圖所示,為了得到f(x)的圖象,則只要將g(x)=cos2x的圖象( 。
A.向右平移$\frac{π}{12}$個單位長度B.向右平移$\frac{π}{6}$個單位長度
C.向左平移$\frac{π}{12}$個單位長度D.向左平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目: 來源: 題型:選擇題

16.$cos\sqrt{2},sin\sqrt{2},tan\sqrt{2}$的大小關(guān)系是( 。
A.$sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$B.$cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$C.$cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$D.$sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.下列敘述中,正確的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$
B.若|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$
C.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$⊥$\overrightarrow$
D.若向量$\overrightarrow$與向量$\overrightarrow{a}$共線,則有且只有一個實數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)集合M={3,a},N={x|x2-3x<0,x∈Z},M∩N={1},則M∪N為( 。
A.{1,3,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知二項式(x-$\frac{1}{x}$)6,則展開式中x2項的系數(shù)為15.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知數(shù)列{an}的通項公式an=nsin$\frac{nπ}{2}$,其前n項和為Sn,則S2016=-1008.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知△ABC中,角A,B,C對應(yīng)的分別是a,b,c,若a=4,b=6,C=60°.
(1)求$\overrightarrow{BC}•\overrightarrow{CA}$;
(2)求$\overrightarrow{CA}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

同步練習(xí)冊答案