相關習題
 0  240349  240357  240363  240367  240373  240375  240379  240385  240387  240393  240399  240403  240405  240409  240415  240417  240423  240427  240429  240433  240435  240439  240441  240443  240444  240445  240447  240448  240449  240451  240453  240457  240459  240463  240465  240469  240475  240477  240483  240487  240489  240493  240499  240505  240507  240513  240517  240519  240525  240529  240535  240543  266669 

科目: 來源: 題型:選擇題

14.若復數(shù)z=1+2i,則復數(shù)z的模等于( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.各項為正的數(shù)列{an}滿足${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{{a_n}^2}}{λ}+{a_n}(n∈{N^*})$,
(1)當λ=an+1時,求證:數(shù)列{an}是等比數(shù)列,并求其公比;
(2)當λ=2時,令${b_n}=\frac{1}{{{a_n}+2}}$,記數(shù)列{bn}的前n項和為Sn,數(shù)列{bn}的前n項之積為Tn,
求證:對任意正整數(shù)n,2n+1Tn+Sn為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知數(shù)列{an},{bn}滿足:bn=an+1-an(n∈N*).
(1)若a1=1,bn=n,求數(shù)列{an}的通項公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(i)記cn=a6n-1(n≥1),求證:數(shù)列{cn}為等差數(shù)列;
(ii)若數(shù)列{$\frac{{a}_{n}}{n}$}中任意一項的值均未在該數(shù)列中重復出現(xiàn)無數(shù)次,求首項a1應滿足的條件.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-ax,g(x)=$\frac{1}{x}$+a.
(1)當a=2 時,求F(x)=f(x)-g(x)在(0,2]的最大值;
(2)討論函數(shù)F(x)=f(x)-g(x) 的單調性;
(3)若f(x)•g(x)≤0 在定義域內恒成立,求實數(shù)a的取值集合.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖直三棱柱ABC-A1B1C1 中AC=2AA1,AC⊥BC,D、E 分別為A1C1、AB 的中點.求證:
(1)AD⊥平面BCD
(2)A1E∥平面BCD.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)$f(x)=mx-alnx-m\;,\;\;g(x)=\frac{x}{{{e^{x-1}}}}$,其中m,a均為實數(shù),e為自然對數(shù)的底數(shù).
(I)求函數(shù)g(x)的極值;
(II)設m=1,a<0,若對任意的x1,x2∈[3,4](x1≠x2),$|{f({x_2})-f({x_1})}|<|{\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}}|$恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.定義在(0,+∞)上函數(shù)f(x)滿足:①當x∈[1,3)時,f(x)=1-|x-2|;②f(3x)=3f(x).設關于x的函數(shù)F(x)=f(x)-a的零點從小到大依次為x1,x2,…,xn….若a∈(1,3),則x1+x2+…+x2n=6(3n-1).

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-λ.且數(shù)列{bn}是單調遞增數(shù)列,則實數(shù)λ的取值范圍為( 。
A.λ>2B.λ<2C.λ>3D.λ<3

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知函數(shù)y=f(x)在[0,+∞)上是遞減函數(shù),則f($\frac{3}{4}$)≥f(a2-a+1)(填“≥”“≤”“>”“<”).

查看答案和解析>>

科目: 來源: 題型:填空題

5.函數(shù)f(x)與g(x)的定義域為[m,n],它們的圖象如圖所示,則不等式f(x)g(x)<0的解集是{x|x∈(m,a)∪(a,b)∪(c,d)}.

查看答案和解析>>

同步練習冊答案