相關(guān)習(xí)題
 0  240814  240822  240828  240832  240838  240840  240844  240850  240852  240858  240864  240868  240870  240874  240880  240882  240888  240892  240894  240898  240900  240904  240906  240908  240909  240910  240912  240913  240914  240916  240918  240922  240924  240928  240930  240934  240940  240942  240948  240952  240954  240958  240964  240970  240972  240978  240982  240984  240990  240994  241000  241008  266669 

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(wx+$\frac{π}{3}$)(w>0)的最小正周期為π,則該函數(shù)的圖象關(guān)于( 。⿲ΨQ.
A.點(diǎn)($\frac{π}{3}$,0)B.直線x=$\frac{π}{4}$C.點(diǎn)($\frac{π}{4}$,0)D.直線x=$\frac{π}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知向量|$\overrightarrow a$|=4,|$\overrightarrow b$|=3,$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求|$\overrightarrow a+\overrightarrow b$|;
(2)求向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影.

查看答案和解析>>

科目: 來源: 題型:填空題

14.某企業(yè)的廣告支出x(萬元)與銷售收入(萬元)的統(tǒng)計(jì)數(shù)據(jù)如表:
x2345
y26394954
根據(jù)表中數(shù)據(jù)得到的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}$為9.4,則$\stackrel{∧}{a}$為9.1.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.底面為正方形的四棱錐S-ABCD,且SD⊥平面ABCD,SD=$\sqrt{2}$,AB=1,線段SB上一M點(diǎn)滿足$\frac{SM}{MB}$=$\frac{1}{2}$,N為線段CD的中點(diǎn),P為四棱錐S-ABCD表面上一點(diǎn),且DM⊥PN,則點(diǎn)P形成的軌跡的長度為(  )
A.$\sqrt{2}$B.$\frac{5\sqrt{2}}{4}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.
(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.求函數(shù)f(x)=x3+x+1的圖象在點(diǎn)(1,f(1))處的切線方程4x-y-1=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.將函數(shù)y=cosx的圖象向右平移$\frac{π}{2}$個(gè)單位長度,再向上平移1個(gè)單位長度,則所得的圖象對應(yīng)的解析式為( 。
A.y=1-sinxB.y=1+sinxC.y=1-cosxD.y=1+cosx

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,雙曲線上一點(diǎn)P滿足PF2⊥x軸.若|F1F2|=12,|PF2|=5則該雙曲線的離心率為$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知α,β為銳角,且$cosα=\frac{{7\sqrt{2}}}{10}$,cos(α+β)=$\frac{2\sqrt{5}}{5}$,則cos2β=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目: 來源: 題型:解答題

7.計(jì)算:
(1)($\frac{1}{16}$)${\;}^{-\frac{1}{2}}$+(-$\frac{2}{3}$)0-$\sqrt{{3}^{2}}$+log39
(2)(lg2)2+lg5•lg20-1
(3)sin220°+cos220°+$\sqrt{3}$sin20°cos80°.

查看答案和解析>>

同步練習(xí)冊答案